MAPEAMENTO DA CADEIA PRODUTIVA DA INDÚSTRIA EÓLICA NO BRASIL
MAPEAMENTO DA CADEIA PRODUTIVA DA
INDÚSTRIA EÓLICA NO BRASIL
MAPEAMENTO DA CADEIA PRODUTIVA DA INDÚSTRIA EÓLICA NO BRASIL
ABDI - Agência Brasileira de Desenvolvimento Industrial

Supervisão
Otávio Silva Camargo - ABDI

Agência Brasileira de Desenvolvimento Industrial

Equipe Técnica
Miguel Antônio Cedraz Nery - Gerente
Jorge Luís Ferreira Boeira - Coordenador
Eduardo Augusto Rodrigues Tosta - Especialista

Gerência
Miguel Antônio Cedraz Nery
Gerente de Projetos

Coordenação
Jorge Luís Ferreira Boeira
Coordenador de Energia

Líder de Projeto
Eduardo Augusto Rodrigues Tosta
Especialista em Competitividade Setorial

Gerência de Comunicação
Oswaldo Buarim Júnior

Revisão de texto
G3 Comunicação

Projeto gráfico e diagramação
G3 Comunicação
SUMÁRIO

1. INTRODUÇÃO ... 9

2. RELATÓRIO DOS ITENS QUE COMPÔEM A
CADEIA PRODUTIVA DE BENS E SERVIÇOS ... 11

2.1 RELATÓRIO DE BENS – PARTES E COMPONENTES .. 11
 2.1.1 TOPOLOGIAS DE AEROGERADOR ... 11
 2.1.2 GERADOR DE INDUÇÃO COM ROTOR VENTILADO
(WOUND ROTOR INDUCTION GENERATOR - WRIG) ... 13

2.2 PRINCIPAIS COMPONENTES DE UM AEROGERADOR DE EIXO HORIZONTAL 17
 2.2.1 TORRE ... 18
 2.2.2 ROTOR ... 21
 2.2.3 NACELE .. 24
 2.2.4 BENS NECESSÁRIOS À MONTAGEM DO PARQUE ... 26

2.3 RELATÓRIO DOS SERVIÇOS .. 27
 2.3.1 SERVIÇOS DE DESENVOLVIMENTO DE PROJETOS .. 27
 2.3.2 SERVIÇOS DE APOIO À NEGOCIAÇÃO ... 28
 2.3.3 SERVIÇOS DE EXECUÇÃO .. 29
 2.3.4 SERVIÇOS DE OPERAÇÃO E MANUTENÇÃO ... 29
 2.3.5 OUTROS SERVIÇOS ... 30

2.4 CADEIA DE VALOR DE BENS E SERVIÇOS ... 30
 2.4.1 MATERIAIS ... 31
 2.4.2 COMPONENTES E SUBCOMPONENTES .. 32

2.5 MANUFACTURA ... 33
 2.5.1 LOGÍSTICA E OPERAÇÕES .. 33
 2.5.2 PRODUTORES – PROPRIETÁRIOS DOS PARQUES .. 34
 2.5.3 USO FINAL ... 35
 2.5.4 P&D .. 35
3. RELATÓRIO DO MAPEAMENTO DA CADEIA PRODUTIVA NACIONAL
DE BENS E SERVIÇOS ... 37
3.1 FABRICANTES NACIONAIS DE PARTES E COMPONENTES .. 37
3.2 FORNECEDORES DE AEROGERADOR (MONTADORAS) ... 37
 3.2.1 FABRICANTES DE TORRE ... 42
 3.2.2 FABRICANTES DE PÁS .. 44
 3.2.3 FABRICANTES DE SUBCOMPONENTES E INSUMOS PARA TORRES 46
 3.2.4 FABRICANTES DE SUBCOMPONENTES E INSUMOS PARA O ROTOR – PÁS E CUBO .. 51
 3.2.5 FABRICANTES DE SUBCOMPONENTES DA NACELE ... 57
3.3 FORNECEDORES NACIONAIS DE SERVIÇOS ... 63
 3.3.1 SERVIÇOS DE DESENVOLVIMENTO DE PROJETOS ... 64
 3.3.2 SERVIÇOS DE APOIO À NEGOCIAÇÃO ... 68
 3.3.3 SERVIÇOS DE EXECUÇÃO .. 70
 3.3.4 SERVIÇOS DE OPERAÇÃO E MANUTENÇÃO .. 73
 3.3.5 OUTROS SERVIÇOS .. 76
3.4 DESCRIPTIVO DA CAPACIDADE DE PRODUÇÃO ... 77
3.5 COMPLEMENTARIDADES NA CADEIA NACIONAL .. 79
3.6 METODOLOGIAS DE COMPRAS DOS FABRICANTES DE AEROGERADORES....... 80

4. RELATÓRIO COM ANÁLISE CRÍTICA PARA SUBSTITUIÇÃO DE IMPORTAÇÕES DE BENS E SERVIÇOS ... 82
 4.1 RELATÓRIO COM ANÁLISE CRÍTICA DOS BENS IMPORTADOS NA CADEIA PRODUTIVA DE ENERGIA EÓLICA .. 82
 4.2 RELATÓRIO COM ANÁLISE CRÍTICA DOS SERVIÇOS IMPORTADOS NA CADEIA PRODUTIVA DE ENERGIA EÓLICA .. 89
 4.3 RELATÓRIO COM ANÁLISE CRÍTICA DO SETOR .. 90
 4.3.1 ANÁLISE CRÍTICA DOS REQUISITOS DO FINAME DO BNDES EM RELAÇÃO AOS FABRICANTES NACIONAIS .. 91
 4.3.2 ANÁLISE CRÍTICA DOS GARGALOS IDENTIFICADOS NA INDÚSTRIA NACIONAL .. 93
 4.3.3 ANÁLISE CRÍTICA SOBRE O REGIME ESPECIAL – REIDI E SEUS IMPACTOS EM TODA A CADEIA DE FORNECEDORES E FABRICANTES 97
 4.3.4 ANÁLISE CRÍTICA QUANTO À METODOLOGIA DE AQUISIÇÃO DE ENERGIA ELÉTRICA NO BRASIL .. 98
4.3.5 ANÁLISE CRÍTICA QUANTO ÀS CARACTERÍSTICAS DA INDÚSTRIA NACIONAL PARA PRODUZIR BENS SERIADOS DE GRANDE PORTE EM FORJARIA, FUNDIÇÃO E USINAGEM COM PRECISÃO E QUALIDADE ELEVADA .. 100

4.3.6 ANÁLISE CRÍTICA QUANTO AO POTENCIAL DESENVOLVIMENTO DE TECNOLOGIAS NACIONAIS PARA OS DIVERSOS SEGMENTOS DA CADEIA PRODUTIVA DA INDÚSTRIA EÓLICA ... 102

5. RELATÓRIO DO MAPEAMENTO DOS APLS E POLOS INDUSTRIAIS ... 105

5.1 LOCALIZAÇÃO ESPACIAL DAS MONTADORAS DE AEROGERADORES (NACELES E CUBOS) .. 105

5.2 LOCALIZAÇÃO ESPACIAL DOS FABRICANTES DE TORRES .. 112

5.3 LOCALIZAÇÃO ESPACIAL DOS FABRICANTES DE PÁS ... 117

5.4 ANÁLISES E CONSIDERAÇÕES SOBRE POLOS PRODUTIVOS E APLS .. 120

5.4.1 IDENTIFICAÇÃO DOS POLOS PRODUTIVOS .. 120

5.4.2 ARRANJOS PRODUTIVOS LOCAIS E REGIÕES POTENCIAIS ... 123

5.4.3 LOCALIZAÇÃO DE FORNECEDORES X FATORES LOGÍSTICOS ... 125

6. CONCLUSÕES E SUGESTÕES .. 127

REFERÊNCIAS ... 134

ANEXOS .. 137

ANEXO 1 – LISTA GERAL DE ITENS ... 138

ANEXO 2 – VISÃO ESQUEMÁTICA DO AEROGERADOR E SEUS COMPONENTES 140

ANEXO 3 – LISTA GERAL DE SERVIÇOS .. 143

ANEXO 4 – MONTADORAS DE AEROGERADOR E PRINCIPAIS MODELOS .. 145

ANEXO 5 – METODOLOGIA DO BNDES PARA CREDENCIAMENTO DE AEROGERADORES 147
Figuras

Figura 2 – Esquema de um gerador do tipo SCIG ... 13
Figura 3 – Esquema de um gerador do tipo WRIG ... 13
Figura 4 - Esquema de um gerador do tipo DFIG ... 14
Figura 5 - Esquema de um gerador do tipo SCIG com conversor de larga escala 14
Figura 6 - Esquema de um gerador do tipo PMSG com conversor de larga escala 15
Figura 7 - Esquema de um gerador do tipo Acionamento Direto Síncrono 15
Figura 8 - Esquema de um gerador de acionamento direto do tipo EESG 16
Figura 9 - Esquema de um gerador de acionamento direto do tipo PMSG 16
Figura 10 - Esquema de um gerador do tipo PMSG com caixa de engrenagem de estágio único ... 17
Figura 11 - Componentes forjados – torres de aço cónicas. .. 18
Figura 12 - Internos da torre. ... 19
Figura 13 – Utilização de fixadores no aerogerador. .. 20
Figura 14 – Elementos de uma pá eólica .. 21
Figura 15 – Processo de fabricação e montagem de pás eólicas. 22
Figura 16 – Raiz de inserção e fixadores ... 22
Figura 17 – Cubo do rotor e subcomponentes - ... 23
Figura 18 – Preparação de fundação para fixação da torre. .. 26
Figura 19 – Subestação e edifício de comando. ... 26
Figura 20 – Guindastes e veículos especiais. ... 27
Figura 21 – Fases de um projeto eólico. ... 27
Figura 22 – Cadeia de valor de bens e serviços ... 36
Figura 23 – Localização das unidades de montagem de naceles e cubos instaladas ou em processo de instalação no Brasil .. 106
Figura 24 – Fábrica de cubos e naceles da Alstom, em Camaçari/BA 107
Figura 25 – Localização das montadoras de aerogeradores e dos principais parques de geração eólica instalados e a instalar no País 108
Figura 26 – Representação geográfica da cadeia produtiva de cubos 109
Figura 27 – Representação geográfica da cadeia produtiva de naceles 112
Figura 28 – Localização das fábricas de torres instaladas ou em processo de instalação no Brasil ... 113
Figura 29 – Representação geográfica da cadeia produtiva de torres de aço 115
Figura 30 – Representação geográfica da cadeia produtiva de torres de concreto 117
Quadros

Quadro 1 - Itens e insumos utilizados em torres cônicas .. 20
Quadro 2 - Itens e insumos utilizados nas pás e cubo do rotor .. 24
Quadro 3 - Componentes e subcomponentes da nacelle .. 25
Quadro 4 – Serviços de desenvolvimento de projetos .. 28
Quadro 5 – Serviços de apoio à negociação ... 28
Quadro 6 – Serviços de execução do projeto do parque ... 29
Quadro 7 – Serviços de O&M ... 30
Quadro 8 – Materiais e respectivos componentes .. 32
Quadro 9 – Montadoras de aerogerador SEM caixa de engrenagem 38
Quadro 10 – Montadoras de aerogerador COM caixa de engrenagem 40
Quadro 11 – Fabricantes nacionais de torres de aço ... 43
Quadro 12 – Fabricantes nacionais de torres de concreto ... 44
Quadro 13 – Fabricantes nacionais de pás eólicas ... 45
Quadro 14 – Fabricantes nacionais de subcomponentes e insumos para torres de aço 47
Quadro 15 – Fabricantes nacionais de subcomponentes e insumos para torres de concreto 48
Quadro 16 – Fabricantes nacionais de elementos internos das torres 50
Quadro 17 – Fabricantes nacionais de elementos e insumos para pás 52
Quadro 18 – Fabricantes nacionais de subcomponentes do cubo ... 54
Quadro 19 – Fabricantes nacionais de subcomponentes do rotor – Sistema de passo 56
Quadro 20 – Fabricantes nacionais de subcomponentes da nacelle 61
Quadro 21 – Fornecedores de serviço associados ao desenvolvimento de projetos 68
Quadro 22 – Fornecedores de serviço de apoio a negociações ... 69
Quadro 23 – Fornecedores de serviços de pré-construção e construção 73
Quadro 24 – Fornecedores nacionais de serviços associados a O&M dos parques eólicos 75
Quadro 25 – Outros serviços ... 76
Quadro 26 – Relação demanda e capacidade produtiva da indústria nacional 77
Quadro 27 – Principais gargalos produtivos por componente .. 79
Quadro 28 – Itens importados na cadeia eólica, motivações para importação e particularidades envolvidas ... 85
Quadro 29 – Itens com possibilidade de localização, empresas potenciais e necessidades para viabilização .. 88
Quadro 30 – Montadoras e respectivos fabricantes de torres .. 95
Quadro 31 – Fabricantes de Pás e respectivas montadoras atendidas .. 95
Quadro 32 – Montadoras de aerogeradores com fábricas no Brasil, com localização e capacidade ... 105
Quadro 33 – Localização dos principais fornecedores de subcomponentes para a montagem dos cubos .. 109
Quadro 34 – Localização dos principais fornecedores de subcomponentes para a montagem das naceles .. 111
Quadro 35 – Fabricantes de torres com fábricas no Brasil por tipo, com localizações e capacidades .. 113
Quadro 36 – Localização dos principais fornecedores de subcomponentes para torres de aço .. 114
Quadro 37 – Localização dos principais fornecedores de subcomponentes para torres de concreto .. 116
Quadro 38 – Fabricantes de pás eólicas com fábrica no Brasil, com localizações e capacidades .. 118
Quadro 39 – Localização dos principais fornecedores de insumos e itens para a fabricação das pás .. 119
Quadro 40 – Principais gargalos, incentivos, necessidades e oportunidades para o fornecimento local de bens e serviços .. 128
1. INTRODUÇÃO

Este relatório apresenta os resultados do Estudo de Mapeamento da Cadeia Produtiva da Indústria Eólica no Brasil. Nele estão consolidados relatórios contendo análises críticas e sugestões para fomentar o desenvolvimento da cadeia produtiva de bens e serviços, propor melhorias da cadeia já existente, estimular a formação de clusters, e de arranjos produtivos do segmento de energia eólica no Brasil.

Neste Produto estão consolidados o relatório dos itens que compõem a cadeia produtiva de bens e serviços; o relatório do mapeamento da cadeia produtiva nacional de bens e serviços; o relatório com análise crítica para substituição de importações de bens e serviços; e o relatório do mapeamento dos Arranjos Produtivos Locais (APLs) e Polos Industriais, organizados, portanto, na forma de um único caderno.

As informações utilizadas na elaboração desse trabalho foram obtidas principalmente por meio de pesquisa de campo, na forma de entrevistas semiestruturadas com os principais fabricantes, prestadores de serviço, entidades representativas do setor e órgãos governamentais. A etapa principal de coleta de dados compreendeu um período amplo, de julho a dezembro de 2013, sendo que algumas entrevistas e visitas complementares ocorreram mais recentemente, de março a junho de 2014.

As entrevistas foram realizadas de forma a atender à metodologia de amostragem solicitada no termo de referência, e foram, em sua maioria, presenciais. Dados secundários como apresentações em fóruns e congressos, notícias e publicações do setor complementaram a coleta.

A amostra foi composta pelo seguinte grupo:

- Seis montadoras de aerogerador (existem sete atuantes no País e credenciadas pelo BNDES);
- Quatro fabricantes de pás eólicas (existem quatro instaladas no País);
- Dois fabricantes de torres de aço (existem oito instaladas no País);
- Dois fabricantes de torres de concreto (existem cinco instaladas no País);
- Treze fabricantes de peças e componentes;
- Quatro prestadores de serviço;
- Três proprietários de parques eólicos;
- Duas entidades representativas do setor.
As entrevistas foram realizadas de acordo com a estratégia definida no plano de trabalho. A participação em reuniões com o BNDES, com o Conselho de Eólica da ABIMAQ, com o Grupo Técnico de Eólica, organizado pela Agência de Desenvolvimento e Promoção do Investimento do Rio Grande do Sul (AGDI-RS), e em diversos eventos realizados ao longo de 2013 e 2014, oportunizou uma visão geral do setor.

Os eventos supracitados foram:

- 2º Encontro de Negócios – Supply Chain, em São Paulo, promovido pela Associação Brasileira de Energia Eólica (ABEEólica);
- Lançamento do Certificado Energia Renovável, em Brasília, promovido pela Associação Brasileira de Geração de Energia Limpa (ABRAGEL), Apex-Brasil e ABEEólica;
- Brazil Wind Power 2013, conferência e exposição, no Rio de Janeiro;
- Bom dia Energia, em Porto Alegre, promovido pela Sociedade de Engenharia do Rio Grande do Sul (SERGS);
- Windpower Tech Brazil– fórum prático de tecnologia, engenharia e operação para performance e excelência de parques eólicos, em São Paulo, promovido pela FOX Smart Business;
- Renex South America– Feira Internacional de Energias Renováveis, em Porto Alegre;
- Mercado Eólico no Brasil: oportunidades para cadeia produtiva – Workshop promovido pela ABIMAQ.

Cabe ressaltar que as informações aqui apresentadas representam o melhor do conhecimento obtido e, embora não sejam exaustivas, acredita-se que sejam suficientes para retratar os principais aspectos relativos ao estágio atual da cadeia produtiva da indústria eólica no País.

Como se trata um mercado bastante dinâmico, algumas atualizações sobre novos fabricantes e sobre a evolução dos processos de nacionalização identificados no mapeamento podem ter sofrido alterações até a publicação do presente trabalho.
2. RELATÓRIO DOS ITENS QUE COMPÕEM A CADEIA PRODUTIVA DE BENS E SERVIÇOS

2.1 RELATÓRIO DE BENS – PARTES E COMPONENTES

Os bens que compõem a cadeia produtiva da indústria eólica compreendem o aerogerador e os itens de infraestrutura do parque eólico, como fundações e os equipamentos necessários para conexão à rede elétrica, tais como: transformadores, subestação, cabos e inversores.

O aerogerador é considerado o item crítico do sistema, pois representa geralmente mais de 60% do investimento de um parque eólico. Trata-se de uma máquina complexa, de grande porte, com capacidades variando atualmente entre 1,5 e 3 MW (caso dos parques Onshore). Os principais aerogeradores utilizados em escala de utilidades são os com rotor de eixo horizontal do tipo hélice, composto normalmente por três pás. A Figura 1 ilustra os componentes básicos dos aerogeradores de eixo horizontal e diferentes configurações existentes em termos de tamanho e formato de nacele, presença ou não de caixa multiplicadora e tipo de gerador utilizado (convencional ou multipolos).

Figura 1 – Componentes básicos de aerogeradores de eixo horizontal em diferentes configurações. Adaptado de: CRESESB (2008)

2.1.1 TOPOLOGIAS DE AEROGERADOR

Diferentes tecnologias de aerogeradores têm sido desenvolvidas nas últimas décadas. Dependendo da tecnologia, pode haver componentes e/ou subcomponentes específicos, bem
como pode haver diferenças em sua disposição no aerogerador. As diferentes tecnologias de aerogerador podem ser classificadas segundo os seguintes conceitos (UPWIND, 2007):

a. Velocidade de rotação: velocidade fixa (VF); velocidade variável limitada (VVL); velocidade variável (VV);

b. Regulagem de força ou mecanismo de controle: controle estol (stall); controle de estol ativo; controle de passo (pitch);

c. Trem de acionamento (drive train): com caixa de engrenagem (multiplicadora); sem caixa de engrenagem (acionamento direto);

d. Tipo de gerador: gerador de indução (assíncrono) com rotor de gaiola (squirrel cage induction generator – SCIG); gerador de indução com rotor ventilado (wound rotor induction generator – WRIG); gerador de indução duplamente excitado (doubly fed induction generator – DFIG); gerador síncrono de excitatriz com ímãs permanentes (permanent magnet synchronous generator – PMSG); gerador síncrono excitado electricamente – com enrolamento de campo (electrically excited synchronous generator – EESG).

O gerador síncrono chama-se alternador e o gerador assíncrono se designa indução. O nome síncrono se deve ao fato de a máquina operar com uma velocidade de rotação constante sincronizada com a frequência da tensão elétrica alternada aplicada aos seus terminais, ou seja, devido ao movimento igual de rotação entre o campo girante e o rotor (sincronismo entre campo do estator e rotor). Os geradores assíncronos rodam com uma velocidade superior à velocidade de sincronismo, existindo escorregamento do rotor em relação ao campo girante. A máquina assíncrona não necessita de excitatriz.

Conforme o conceito de velocidade de rotação, diferentes combinações de mecanismos de controle, acionamento e tipo de gerador foram desenvolvidas. A seguir esses diferentes conceitos são abordados de maneira detalhada.

2.1.1.1 Gerador de indução com rotor de gaiola (squirrel cage induction generator – SCIG)

A topologia dominante nos anos 80 e 90 é a conhecida como “conceito dinamarquês”: velocidade fixa, controle estol, caixa de engrenagem de múltiplo estágio e gerador de indução com rotor de gaiola (SCIG) conectado diretamente à rede através de um transformador. A Figura 2 apresenta esta topologia de forma esquemática.
Este sistema evoluiu posteriormente para um sistema de duas velocidades utilizando um gerador SCIG com polo mutável. Obteve-se assim maior eficiência das pás e redução de ruído a baixas velocidades. Este conceito tem sido usado pela Vestas, Made (atualmente Gamesa) e Nordex. Geralmente o número de polos dos aerogeradores comerciais deste tipo é de dois ou três pares, requerendo uma caixa de engrenagem de três estágios. Não há conexão elétrica entre o estator e o rotor.

A introdução do controle de estol ativo permitiu a virada da pá, melhorando a eficiência de extração de potência da máquina (o passo da pá do rotor é girado na direção do estol e não na direção da posição de embandeiramento – menor sustentação – como é feito em sistemas de passo normais). Este sistema tem sido usado pela Siemens e Vestas. O controle de passo vira as pás no sentido contrário do mecanismo de estol ativo e necessita de acionamento mais potente, com algumas desvantagens para o caso de aerogeradores de grande porte.

2.1.2 GERADOR DE INDUÇÃO COM ROTOR VENTILADO (WOUND ROTOR INDUCTION GENERATOR - WRIG)

Nos anos 90 a Vestas passou a adotar o conceito de velocidade limitada conhecido como *OptiSlip*. Este conceito utiliza um conversor eletrônico de potência para controlar a resistência do rotor (*slip*) e um gerador de indução com rotor ventilado (WRIG), similar ao SCIG. Fabricantes como Vestas e Suzlon utilizam este conceito, esquematizado na Figura 3.
mecanismo de controle de passo, caixa de engrenagem multiestágio, e conversor eletrônico de potência. São possíveis diferentes conceitos de gerador: DFIG, SCIG e PMSG.

2.1.2.1 Gerador de indução duplamente excitado (doubly fed induction generator – DFIG)

O gerador de indução duplamente excitado (DFIG) é o tipo geralmente utilizado para aerogeradores de grande porte. O princípio básico de operação é similar ao SCIG, porém a potência ativa do rotor pode ser controlada pela corrente do conversor paralelo ao rotor, conforme esquema da Figura 4.

![Figura 4 - Esquema de um gerador do tipo DFIG](image)

O sistema com gerador SCIG precisou ser modificado, com a introdução de um conversor de potência para permitir a operação com velocidade variável. Comparativamente ao conceito dinamarquês, este sistema tem a desvantagem de maior custo, associado ao elevado custo do conversor de larga escala (full scale converter). A Siemens utiliza este conceito, esquematizado na Figura 5, em alguns modelos comerciais.

![Figura 5 - Esquema de um gerador do tipo SCIG com conversor de larga escala](image)

2.1.2.2 Gerador síncrono de excitatriz com ímãs permanentes (permanent magnet synchronous generator – PMSG)

Uma alternativa ao tipo DFIG é o gerador síncrono de excitatriz com ímãs permanentes (PMSG) e com conversor de larga escala. O custo dos componentes eletrônicos é menor e não são utilizadas escovas. Esta tecnologia tem sido usada pela Gamesa (Made), GE e Clipper, e é representada esquematicamente na Figura 6.
A partir de 1991, aerogeradores com acionamento direto (sem caixa de engrenagem) começaram a surgir como forma de reduzir as falhas associadas à caixa de engrenagem e minimizar problemas de manutenção. A principal diferença entre os geradores com e sem caixa de engrenagem é a velocidade de rotação do gerador. O gerador de acionamento direto gira a baixa velocidade porque o rotor do gerador está conectado diretamente ao cubo do rotor das pás, sendo necessária então a produção de uma taxa de torque elevada. Como consequência, o gerador de acionamento direto é geralmente mais pesado que o com caixa de engrenagem. Para maior eficiência e diminuição de peso de partes ativas, os geradores de acionamento direto são projetados com diâmetro maior e menor passo de polo, conforme Figura 7.
Há dois conceitos principais de gerador no mercado sem a utilização de caixa de engrenagem: o tipo EESG e o tipo PMSG.

2.1.2.3 Gerador síncrono excitado eletricamente – com enrolamento de campo (electrically excited synchronous generator - EESG)

O tipo EESG, gerador síncrono excitado eletricamente com enrolamento de campo, é o mais comumente utilizado pelos fabricantes com tecnologia sem caixa de engrenagem. É construído com um sistema com enrolamento de campo e não requer o uso de ímãs permanentes, os quais agregariam um custo adicional significativo ao gerador. Por outro lado, o custo do convertor necessário é considerável, pois requer componentes eletrônicos mais caros e necessita de refrigeração intensiva. Este conceito, esquematizado na Figura 8, é utilizado pela Enercon/Wobben, que o denomina de gerador anelar (annular generator).

![Figura 8 - Esquema de um gerador de acionamento direto do tipo EESG](image)

Recentemente, o uso de geradores do tipo PMSG tem se tornado mais atrativo pela melhoria de desempenho e diminuição dos custos dos ímãs e outros componentes eletrônicos. Empresas como WEG (tecnologia Northern) e IMPSA (tecnologia Vensys) utilizam este conceito, representado esquematicamente na Figura 9.

![Figura 9 - Esquema de um gerador de acionamento direto do tipo PMSG](image)

Há ainda sistemas com utilização do conceito de velocidade variável, com gerador de ímãs permanentes e caixa de engrenagem planetária de estágio único. Este conceito, apresentado na Figura 10, foi introduzido pela Multibrid e é também utilizado pela WinWind.
Outra variação é o conceito apresentado pela DeWind, com utilização de caixa de engrenagem de dois estágios, hidrodinâmica. Vários outros conceitos estão sendo desenvolvidos, tais como: gerador de indução linear, geradores de relutância comutada e geradores de indução sem escovas (brushless doubly fed induction generators – BDFIGs), mas que ainda não são comercializados de forma ampla no mercado.

2.2 PRINCIPAIS COMPONENTES DE UM AEROGERADOR DE EIXO HORIZONTAL

Como visto anteriormente, o aerogerador é constituído pelos seguintes componentes básicos: torre, pás, cubo do rotor, eixo, nacele, gerador e, dependendo da tecnologia, caixa de engrenagem (Figura 1). Outra subdivisão possível é a que separa os componentes principais em (AWEA, 2011; POLYTEC, 2009): rotor (compreendendo as pás, o cubo, rolamentos e mecanismos de controle); trem de acionamento (compreendendo o eixo principal, sistema de freios e, se houver, caixa de engrenagem e eixo secundário); nacele (considerando carenagem em fibra, sistema de Yaw –guinada, peças estruturais e equipamentos auxiliares); sistema de força elétrica (contendo gerador, conversor ou inversor, se algum, cabos internos e transformador); e a torre.

A abertura dos componentes e subcomponentes para uma visão única de árvore de produto é dificultada pelas diferentes tecnologias utilizadas pelos fabricantes e também pelas diferentes sistemáticas de compras e nomenclaturas utilizadas. A fim de facilitar este processo e permitir a elaboração da relação de itens produtivos previstas no projeto, será considerada prioritariamente a sistemática e a taxonomia adotadas pelo BNDES para fins de credenciamento dos aerogeradores no FINAME¹. Nesta sistemática os aerogeradores são divididos em dois grandes grupos – com e sem caixa de engrenagem. E a subdivisão dos componentes é feita considerando-se: torre, pâ, cubo e nacele. A seguir, os principais componentes e subcomponentes são brevemente descritos.

¹ Ver site do BNDES para mais detalhes: http://www.bndes.gov.br/SiteBNDES/bndes/bndes_pt/Ferramentas_e_Normas/Credenciamento_de_Equipamentos/credenciamento_aerogeradores.html
2.2.1 Torre

As torres são as estruturas responsáveis pela sustentação e posicionamento do conjunto rotor-nacele a uma altura conveniente ao seu funcionamento. As torres podem ser do tipo cônica ou treliçada e construídas a partir de diferentes materiais (CUSTÓDIO, 2013). As torres cônicas podem ser de aço laminado ou concreto protendido, e as torres treliçadas utilizam aço galvanizado. Há também as chamadas torres (cônicas) híbridas, nas quais a parte de baixo da torre (cerca de 60 metros) é construída em concreto e a parte superior é feita em aço. As duas partes são acopladas através de um anel de transição. A definição do tipo de torre/material depende de fatores como custo, altura do aerogerador, facilidade de transporte, montagem e manutenção. De maneira geral, pode-se dizer que as torres de aço cônicas são mais utilizadas em alturas menores, na faixa de 80 a 100 metros, enquanto as torres de concreto, híbridas ou as treliçadas são mais empregadas em alturas maiores, acima de 100 metros. As torres treliçadas são mais comumente empregadas em situações que requerem uma logística simplificada, como instalações em locais de difícil acesso. Para o caso de torres “ultra-altas” (na faixa dos 200 metros), há ainda tecnologias que empregam madeira na construção ou então utilizam um esqueleto interno de aço envolto em tecido arquitetônico de alta resistência (BRAZIL, 2013).

Nos parques eólicos instalados no Brasil são mais comuns as torres cônicas de aço e as híbridas (utilizadas pela Wobben). Recentemente as torres totalmente de concreto vêm ganhando espaço no mercado brasileiro e novos fabricantes estão atualmente desenvolvendo protótipos no país.

A Figura 11 ilustra alguns itens componentes forjados da estrutura das torres de aço cônicas.

As torres representam de 20 a 25% do custo do aerogerador. No caso das torres cônicas de aço, são utilizadas de 100 a 200 toneladas deste material, dependendo da altura – aproximadamente 98% da torre é feita de aço. Neste caso a torre correspondendo a cerca de 65% do peso do aerogerador. As torres de concreto são bem mais pesadas, atingindo 850 toneladas apenas em sua parte estrutural. Além dos componentes estruturais, que correspondem a cerca de 90% do custo de material, fazem parte das torres uma série de componentes internos, tais como: escadas, elevadores, plataformas, suportes, guard-rails, etc. A Figura 12 apresenta alguns dos componentes internos das torres.

O Quadro 1 traz uma abertura detalhada dos itens e insumos utilizados em torres cônicas de aço e concreto.

2 Na metodologia do BNDES o elevador é considerado um item associado à nacele.
Quadro 1 - Itens e insumos utilizados em torres cônicas

A Figura 13 detalha a utilização de fixadores, que além de serem usados na conexão das seções das torres, também são utilizados nas fundações, na conexão do rotor com a nacele e na fixação das pás ao rotor.

Figura 13 – Utilização de fixadores no aerogerador. Disponível em: <http://www.august-friedberg.com/produkte/windenergie_por.asp>. Acesso em 02/09/13.
2.2.2 Rotor

O rotor compreende basicamente as pás – três por aerogerador (tipo comercial de grande porte mais comum) – e o cubo onde são fixadas. As pás são os elementos que interagem diretamente com o vento. São perfis aerodinâmicos de 30 a 70 metros de comprimento (instalações Onshore) fabricados em material compósito – resina epóxi ou poliéster reforçada com fibra de vidro e/ou carbono – e representam cerca de 22% do custo do aerogerador e 7% de sua massa (6 a 10 toneladas cada uma). As pás normalmente recebem um acabamento superficial para proteção do compósito às intempéries, à base de gel-coat e/ou revestimentos poliuretânicos. O “bordo de ataque”, superfície que está em atrito direto com vento, chuva e particulados em altas velocidades, é a região mais crítica, passível de desgaste por erosão.

Em termos estruturais a pá consiste em um casco externo, formado por duas conchas unidas de material compósito, suportado por uma viga principal ou estrutura central (mastro ou alma). Os materiais compósitos podem ser de dois tipos: laminados – várias camadas de materiais compósitos unidas – e sanduíche – camadas externas finas de laminado com um núcleo central de baixa densidade constituído por materiais como madeira balsa, espuma de PVC, PU ou PET. A fabricação do casco e viga central é feita geralmente por processos de infusão, utilizando-se moldes especiais, mas também pode ser por pré-impregnação – processo “Prepreg”. Essas estruturas são posteriormente coladas com adesivos à base de epóxi. A Figura 14 apresenta em detalhe os elementos que compõe uma pá, e as fotos da Figura 15 ilustram o processo de fabricação e montagem das pás.

![Imagem de uma pá eólica](http://www.windpowermonthly.com/article/1137943/service-maintain-wind-turbine-blade). Acesso em 07/09/13
Outro componente da pá é a raiz de inserção. Trata-se de um item crítico, fabricado separadamente, mas que depois é integrado à pá. Este item é ligado ao cubo do rotor de turbina utilizando-se fixadores de metal (T-bolt) colados ou fixados mecanicamente na raiz, conforme Figura 16.

As pás são fixadas em uma estrutura metálica à frente do aerogerador (à frente da nacele) denominada cubo. O cubo é uma peça única de ferro fundido, de alta precisão de fundição e usinagem, construída com liga de alta resistência. Sua massa varia de 7 a 20 toneladas (AWEA, 2011) e seu custo é de aproximadamente 1,4% do custo do aerogerador (SUPPLY, 2007). O cubo acomoda os rolamentos para fixação das pás e os mecanismos e motores.
para o ajuste do ângulo de ataque das pás – o sistema de passo (pitch)\(^3\). O sistema pás e cubo responde então por 10 a 14% do peso do aerogerador e por 20 a 30% do custo da máquina (ANCONA; McVEIGH, 2001).

A Figura 17 apresenta fotos/ilustrações do cubo e seus subcomponentes.

O Quadro 2 apresenta a abertura dos itens e insumos utilizados nas pás e no cubo do rotor.

<table>
<thead>
<tr>
<th>Pás</th>
<th>Rotor (aprox. 20 a 30% do custo do aerogerador)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estrutura da pá (casco externo, mastro interno ou alma e raiz de inserção)</td>
<td>Resina epóxi ou poliéster</td>
</tr>
<tr>
<td>Fixadores (parafusos T-bolt) e porcas (Barrel Nut) Sistemas acessórios</td>
<td>Tecido de fibra de vidro</td>
</tr>
<tr>
<td></td>
<td>Tecido de fibra de carbono</td>
</tr>
<tr>
<td></td>
<td>Espuma de PVC</td>
</tr>
<tr>
<td></td>
<td>Madeira Balsa</td>
</tr>
<tr>
<td></td>
<td>Massas e revestimentos de proteção</td>
</tr>
<tr>
<td></td>
<td>Sistema antirraios</td>
</tr>
<tr>
<td></td>
<td>Sistema antigelo</td>
</tr>
</tbody>
</table>

3 Os aerogeradores modernos utilizam dois diferentes princípios de controle aerodinâmico para limitar a extração de potência à potência nominal do aerogerador. São chamados de controle estol (Stall) e controle de passo (Pitch). No passado, a maioria dos aerogeradores usavam o controle estol simples; atualmente, entretanto, com o aumento do tamanho das máquinas, os fabricantes estão optando pelo sistema de controle de passo, que oferece maior flexibilidade na operação das turbinas eólicas. Nos últimos anos, uma mistura de controle por estol e de passo apareceu, o conhecido “estol ativo”. Neste caso, o passo da pá do rotor é girado na direção do estol e não na direção da posição de embandeiramento (menor sustentação) como é feito em sistemas de passo normais. Mais detalhes sobre estes sistemas podem ser verificados em UpWind (2007) e Cresesb (2006).
A nacele é a carcaça montada sobre a torre que contém uma série de componentes e subcomponentes tais como: eixo, gerador, caixa multiplicadora (quando usada), transformador, sistema de Yaw, etc. O tamanho e o formato da nacele são variáveis de acordo com os componentes e sua disposição em seu interior (CUSTÓDIO, 2013). As maiores variações são entre aerogeradores que utilizam caixa de engrenagem e os que não utilizam – com acoplamento direto.

A nacele pode conter, dependendo da tecnologia/configuração do aerogerador, uma série de elementos estruturais de aço, como a estrutura principal (main frame ou bed plate ou main carrier), o quadro e o bastidor traseiro, que suportam os diversos componentes nela inseridos. O eixo principal, construído em aço ou liga metálica de alta resistência, é o responsável pelo acionamento do gerador, transferindo a energia mecânica da turbina. O gerador transforma a energia mecânica de rotação em energia elétrica e pode ser de diferentes tipos, conforme visto anteriormente. Muitas tecnologias de gerador necessitam do uso de conversores de frequência, para controle da onda de saída, constituindo-se de um retificador e um inversor. O transformador é o equipamento que eleva a tensão de geração ao valor da rede elétrica à qual o aerogerador está conectado. O transformador pode ser instalado no interior da nacele, no interior da torre ou mesmo externamente, acoplado à torre ou no chão. O Sistema de Yaw tem a função de alinhar a turbina com o vento. Este sistema compreende um motor elétrico que gira a nacele sobre o eixo com auxílio de um rolamento – rolamento do Yaw – e também engrenagens para o ajuste da velocidade de giro (CUSTÓDIO, 2013). A caixa multiplicadora, quando existente, representa a maior massa da nacele e também uma grande fração de seu custo (cerca de 13%). Localiza-se entre o rotor e o gerador, de forma a adaptar a baixa rotação do rotor à velocidade de rotação mais elevada do gerador (CRESESB, 2008). É um item que necessita de manutenção intensiva e que representa, portanto, uma fonte de possíveis falhas. Exige o uso de um sistema hidráulico com bombas, trocadores de calor e sistemas de comando para lubrificação e refrigeração. No caso de aerogeradores sem caixa de engrenagem, o gerador utilizado é o de polos salientes.
(ou multipolos) com o estator em forma de anel (CUSTÓDIO, 2013). O Quadro 3 apresenta o detalhamento dos principais componentes e subcomponentes da nacele.

<table>
<thead>
<tr>
<th>Nacele (aprox. 35 a 50% do custo do aerogerador)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Elementos estruturais</td>
</tr>
<tr>
<td>Tala</td>
</tr>
<tr>
<td>Carenagem da nacele</td>
</tr>
<tr>
<td>Acessórios</td>
</tr>
<tr>
<td>Eixo principal</td>
</tr>
<tr>
<td>Rolamento Yaw</td>
</tr>
<tr>
<td>Sistema de Yaw</td>
</tr>
<tr>
<td>Conversor/Inversor</td>
</tr>
<tr>
<td>Transformer</td>
</tr>
<tr>
<td>Sistema de freios</td>
</tr>
<tr>
<td>Sistema de travamento do rotor</td>
</tr>
<tr>
<td>Painel de proteção elétrica</td>
</tr>
<tr>
<td>Cabos/barramento</td>
</tr>
<tr>
<td>Unidade hidráulica</td>
</tr>
<tr>
<td>Sistema de refrigeração da nacele</td>
</tr>
</tbody>
</table>

Aerogerador com caixa	**Habitáculo**
Gerador	Engrenagens planetárias
Caixa Multiplicadora	Rolamentos
	Mangueiras
	Sistema de torque
	Sistema de lubrificação
	Sistema de resfriamento

Aerogerador sem caixa	**Elementos estruturais** do estator
Gerador – Estator	Resina de impregnação
Gerador – Rotor	Núcleo magnético
	Bobinas
	Elementos estruturais do rotor
	Tampa do rotor
	Imãs permanentes

| **Quadro 3 - Componentes e subcomponentes da nacele** |

No Anexo 1 é apresentada uma tabela geral, agrupando os itens que compõe o aerogerador. O Anexo 2 traz uma visão esquemática do aerogerador e seus componentes principais e no Anexo 3 é detalhado o percentual de custo correspondente a cada item – para o caso de um aerogerador com uso de caixa de engrenagem.
2.2.4 BENS NECESSÁRIOS À MONTAGEM DO PARQUE

Além dos aerogeradores, existem outros itens necessários à montagem e funcionamento de um parque eólico. Anteriormente à instalação das torres, é necessária a preparação das bases ou fundações, em concreto armado, como ilustrado na Figura 18.

Figura 18 – Preparação de fundação para fixação da torre. Fonte: Webben/Enercon

São necessárias ainda instalações de: cabos de média tensão e de comunicação para interligação dos aerogeradores e as conexões destes com a subestação; uma subestação; equipamentos elétricos, tais como centros de transformação, inversores, grandes disjuntores, conectores, cubículos compactos de média tensão; um edifício de comando; linhas de transmissão do edifício até a subestação coletora do Sistema Integrado Nacional (SIN). A Figura 19 ilustra a subestação e o edifício de comando de um parque eólico.

Figura 19 – Subestação e edifício de comando. Fonte: CPFL Renováveis

Além dos bens a serem instalados no parque, há bens que são utilizados durante a sua construção, tais como guindastes especiais, para grandes alturas e com capacidade até 750 toneladas, e veículos especiais para movimentação e transporte de componentes específicos, como ilustrado nas fotos da Figura 20.
2.3 RELATÓRIO DOS SERVIÇOS

Diversos são os serviços que fazem parte da cadeia produtiva eólica, os quais podem ser classificados principalmente conforme a fase do desenvolvimento de projetos eólicos aos quais relacionam. Os projetos de parques eólicos seguem basicamente quatro grandes fases: desenvolvimento do projeto, negociação, execução ou implantação, e operação e manutenção. Uma subdivisão possível para os serviços seria: serviços de desenvolvimento de projetos de parques, serviços de apoio à negociação com fornecedores e compradores/leilão, serviços de apoio a pré-construção, serviços para implantação dos parques – logística e execução de obras, serviços de operação e manutenção; além de serviços associados à certificação de aerogeradores e treinamento técnico.

A Figura 21 ilustra as fases de um projeto eólico.

2.3.1 SERVIÇOS DE DESENVOLVIMENTO DE PROJETOS

O desenvolvimento de projetos de parques eólicos pode ser conduzido, em boa parte, internamente pelas equipes próprias das empresas geradoras de energia / proprietários de
parques, ou ser contratado de empresas especializadas nesta prestação de serviços. O desenvolvimento de projetos envolve basicamente as seguintes atividades e subatividades apresentadas no Quadro 4.

Quadro 4 – Serviços de desenvolvimento de projetos

SERVIÇOS DE DESENVOLVIMENTO DE PROJETOS DE PARQUES EÓLICOS

<table>
<thead>
<tr>
<th>Serviço</th>
</tr>
</thead>
<tbody>
<tr>
<td>Prospecção de áreas</td>
</tr>
<tr>
<td>Identificação e seleção de áreas</td>
</tr>
<tr>
<td>Serviços topográficos e de sondagem</td>
</tr>
<tr>
<td>Suporte para análise fundiária</td>
</tr>
<tr>
<td>Contratos para arrendamento de terrenos e permissões</td>
</tr>
<tr>
<td>Estudos de conexão à rede de transmissão</td>
</tr>
<tr>
<td>Estudos de viabilidade</td>
</tr>
<tr>
<td>Revisão de restrições</td>
</tr>
<tr>
<td>Projeto conceitual do parque eólico</td>
</tr>
<tr>
<td>Mapeamento / medição do vento</td>
</tr>
<tr>
<td>Medicação de potência</td>
</tr>
<tr>
<td>Análise energética – estimativa de produção</td>
</tr>
<tr>
<td>Análise financeira</td>
</tr>
<tr>
<td>Revisão da conexão à rede</td>
</tr>
<tr>
<td>Avaliação de incertezas</td>
</tr>
<tr>
<td>Desenvolvimento do projeto</td>
</tr>
<tr>
<td>Elaboração de estudos ambientais</td>
</tr>
<tr>
<td>Monitoramento do vento</td>
</tr>
<tr>
<td>Elaboração de projeto básico / leilute</td>
</tr>
<tr>
<td>Avaliação das condições do site e rendimento energético</td>
</tr>
<tr>
<td>Suporte para conexão à rede</td>
</tr>
<tr>
<td>Suporte para seleção do aerogerador</td>
</tr>
<tr>
<td>Elaboração de projeto construtivo</td>
</tr>
<tr>
<td>Processos técnicos e legais junto a ANEEL</td>
</tr>
<tr>
<td>Licenciamento e registro do projeto</td>
</tr>
</tbody>
</table>

2.3.2 SERVIÇOS DE APOIO À NEGOCIAÇÃO

Há empresas que oferecem serviços de apoio à negociação com fornecedores, para atuação nos leilões para comercialização de contratos, e também de apoio à relação com investidores. O Quadro 5 resume estas atividades.

Quadro 5 – Serviços de apoio à negociação

SERVIÇOS DE APOIO À NEGOCIAÇÃO

<table>
<thead>
<tr>
<th>Serviço</th>
</tr>
</thead>
<tbody>
<tr>
<td>Negociação com fornecedores</td>
</tr>
<tr>
<td>Elaboração de termo de referência de fornecimento</td>
</tr>
<tr>
<td>Suporte para avaliação de propostas de fornecedores</td>
</tr>
<tr>
<td>Negociação com compradores</td>
</tr>
<tr>
<td>Apoio ao leilão</td>
</tr>
<tr>
<td>Comercialização de contratos de energia – trading</td>
</tr>
<tr>
<td>Relação com investidores</td>
</tr>
<tr>
<td>Elaboração de relatórios para investidores</td>
</tr>
<tr>
<td>Due Diligence</td>
</tr>
</tbody>
</table>
2.3.3 SERVIÇOS DE EXECUÇÃO

Os serviços de execução incluem uma fase preliminar – de pré-construção – e a fase de construção e montagem propriamente dita. Para a construção podem ser contratadas diversas empresas individualmente ou contrata-se uma empresa que se responsabiliza por todas as atividades de construção e montagem – modelo *turnkey*. A montagem do aerogerador é geralmente de responsabilidade do fornecedor do aerogerador, que pode então assumir as outras obras configurando o *turnkey*. Os serviços prestados nesta fase são apresentados no Quadro 6.

<table>
<thead>
<tr>
<th>SERVIÇOS DE EXECUÇÃO</th>
<th>Pré-construção</th>
<th>Construção e montagem</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Realização de leilões de contratação e aquisição</td>
<td>Gestão do projeto / execução</td>
</tr>
<tr>
<td></td>
<td>Elaboração / revisão do projeto elétrico e civil</td>
<td>Coordenação e supervisão do trabalho</td>
</tr>
<tr>
<td></td>
<td>Gestão da conexão com a rede</td>
<td>Transporte dos módulos do aerogerador</td>
</tr>
<tr>
<td></td>
<td>Avaliação do rendimento energético formal</td>
<td>Engenharia e gestão do trânsito de grandes cargas</td>
</tr>
<tr>
<td></td>
<td>Due diligence técnica</td>
<td>Movimentação de cargas</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Construção e montagem local</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Monitoramento da construção</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Inspeções e auditorias</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Engenharia do proprietário</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EPC elétrico</td>
</tr>
<tr>
<td></td>
<td></td>
<td>EPC civil</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Elevação e montagem eletromecânica</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Comissionamento e start-up</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Vigilância ambiental da obra</td>
</tr>
</tbody>
</table>

Quadro 6 – Serviços de execução do projeto do parque

2.3.4 SERVIÇOS DE OPERAÇÃO E MANUTENÇÃO

Os produtores de energia geralmente terceirizam as atividades de operação e manutenção do parque eólico (controle da produção de energia e planos de manutenção preventiva). Essas atividades são contratadas principalmente dos fornecedores das máquinas (aerogeradores) na forma de serviço de pós-venda de longo prazo. Também os sistemas elétricos do parque, compreendendo desde as subestações unitárias até as conexões com as redes de transmissão e distribuição de energia, requerem serviços de manutenção.

Esses diversos serviços de O&M oferecidos/contratados, bem como outros relacionados à fase de exploração do parque são apresentados no Quadro 7.
Quadro 7 – Serviços de O&M

2.3.5 OUTROS SERVIÇOS

Além dos vários serviços apresentados anteriormente há ainda diversos outros, tais como: treinamento/capacitação profissional; certificações de turbinas, componentes e projetos; estudos de inteligência de mercado, estudos sobre políticas e regulação; seguros, incluindo gerenciamento de riscos em todas as fases de um projeto eólico, bem como gestão de sinistros; financiamento de projetos, geralmente bancos de fomento e desenvolvimento como o BNDES e outros bancos estaduais, mas também podem envolver bancos privados; etc.

Outro tipo de serviço que ainda pode ser citado é o que envolve o projeto dos aerogeradores e seus componentes. Há empresas especializadas, em geral estrangeiras, dedicadas ao desenvolvimento de projetos para posterior comercialização ou licenciamento.

2.4 CADEIA DE VALOR DE BENS E SERVIÇOS

A cadeia de valor compreende as seguintes atividades principais: fornecimento de materiais (para os aerogeradores), fornecimento de componentes e subcomponentes, montagem do aerogerador (manufatura), fornecimento de serviços (logística e operações), produção ou geração de energia, distribuidores de energia (uso final) e pesquisa e desenvolvimento. A seguir cada uma dessas atividades é abordada com mais detalhes.
2.4.1 MATERIALS

Um grande número de materiais é usado na fabricação de aerogeradores. Os materiais considerados mais importantes são: aço, fibra de vidro, resinas (para compósitos e adesivos), materiais para o núcleo da pá, imãs permanentes e cobre (DOE/O, 2008).

O Quadro 8 apresenta a listagem dos principais materiais e respectivos componentes do aerogerador onde são utilizados.

<table>
<thead>
<tr>
<th>Material</th>
<th>Componente</th>
<th>Observações</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aço laminado (cauleirados)</td>
<td>Torre de aço, rotor e estator, estrutura da nacele, maquinário (sistema hidráulico, de controle, de lubrificação...)</td>
<td>Cerca de 98% de uma torre cônica de aço é aço (aprox. 89% do aerogerador em peso é aço, para o caso dos aerogeradores com torres de aço).</td>
</tr>
<tr>
<td>Concreto</td>
<td>Torre de concreto, bloco da fundação (base do aerogerador)</td>
<td>Composição do concreto: cimento, areia, brita, água e aditivos plastificantes. Em aerogeradores com torre de aço, cerca de 1,3% em peso do total é concreto (fundações). Uma torre de concreto tem massa de aprox. 850 ton.</td>
</tr>
<tr>
<td>Aço forjado</td>
<td>Coroas dos rolamentos do rotor (sistema de passo) e do sistema de Yaw, eixo principal, flanges da torre</td>
<td>Aprox. 0,8% em peso do aerogerador.</td>
</tr>
<tr>
<td>Alumínio</td>
<td>Cubo do rotor, internos da torre, caixa de engrenagem, transformador, carenagens, cabos</td>
<td>É o material da carcaça do cubo.</td>
</tr>
<tr>
<td>Ferro fundido (cast iron)</td>
<td>Cubo do rotor, caixa de engrenagem, gerador, mancais, eixo</td>
<td>Representa aprox. 5,8% em peso do aerogerador.</td>
</tr>
<tr>
<td>GFRP (plástico reforçado com fibra de vidro - compósito)</td>
<td>Pás, carenagem (habitáculo) da nacele, carenagem do cubo</td>
<td>Ver fibra de vidro e resina. O fabricante do componente faz a infusão da fibra com resina. Cerca de 95% em peso da pá é material compósito e adesivos. Representa aprox. 5,8% em peso do aerogerador.</td>
</tr>
<tr>
<td>CFRP (plástico reforçado com fibra de carbono - compósito)</td>
<td>Pás</td>
<td>Ver fibra de carbono e resina. O fabricante do componente faz a infusão da fibra com resina.</td>
</tr>
<tr>
<td>Fibra de vidro</td>
<td>Pás, carenagem (habitáculo) da nacele, carenagem do cubo</td>
<td>Insumo para o compósito GFRP, 70 a 75% em peso da pá.</td>
</tr>
<tr>
<td>Fibra de carbono</td>
<td>Pás</td>
<td>Insumo para o compósito CFRP.</td>
</tr>
</tbody>
</table>
Material | Componente | Observações
---|---|---
Resina (Epóxi ou Poliéster) | Pás, carenagem (habitáculo) da nacele, carenagem do cubo | Insumo para o compósito.
Madeira balsa | Pás | Cerca de 5% em peso da pás e 0,4% do aerogerador.
Adesivos | Pás | Cerca de 15% em peso da pás e 1,1% do aerogerador.
Aço silício | Núcleo magnético | Gerador do tipo EESG
Irãs permanentes (terras raras) | Gerador | Gerador do tipo PMSG
Cobre | Gerador, estator, transformador, maquinários da nacele, caixa de engrenagem, cabos | Aprox. 1,6% em peso do aerogerador.

Quadro 8 – Materiais e respectivos componentes

2.4.2 COMPONENTES E SUBCOMPONENTES

Os componentes e subcomponentes do aerogerador já foram apresentados detalhadamente no capítulo 2.2.

Fabricantes deste estágio da cadeia são normalmente focados em um determinado componente e não produzem outros. Um fabricante de aerogeradores normalmente trabalha com dois ou três fornecedores para cada componente essencial, de modo a não depender de um único fornecedor. São comuns contratos de longo prazo ou são estruturados acordos de forma a garantir um fornecimento contínuo e de alta qualidade (GODOY, 2008). No caso de fabricantes multinacionais, é comum a seleção de fornecedores com base na cadeia de fornecimento global da empresa. Atualmente a seleção de fornecedores para parques no Brasil está sendo influenciada pelas regras de concessão de financiamento, que privilegiam uma base de fornecedores locais, conforme já comentado anteriormente.
2.5 MANUFATURA

A etapa de manufatura está na verdade mais relacionada à montagem do cubo do rotor e da nacele do aerogerador, uma vez que os demais grandes componentes, como a torre e a pá, são geralmente adquiridos ou subcontratados de terceiros. A montagem final do aerogerador ocorre diretamente no parque eólico, com a instalação da torre e posterior acoplamento da nacele e do rotor.

As empresas que projetam e montam os aerogeradores (cubo e nacele) são conhecidas como OEMs (original equipment manufacturers). Algumas OEMs são grandes corporações multinacionais envolvidas em diversos outros tipos de negócio (como por exemplo, GE, Alstom e Siemens), outras têm o setor eólico como seu único negócio (como Wobben/Enercon e Vestas).

A terceirização dos componentes é uma forma de reduzir a necessidade de capital e ter acesso a tecnologias de produção específicas, além de minimizar gastos logísticos – caso de pás e torres, cuja fabricação local, próxima ao parque eólico, pode contribuir significativamente para redução destes custos.

Há diferentes modelos de negócio adotados pelos fornecedores de aerogeradores, desde os fornecedores puros até os que participam de outras etapas, chegando mesmo a produzir energia. Para garantir o suprimento de componentes e/ou controlar os custos, algumas OEMs têm participação acionária (quase-integração vertical) ou estabelecem alianças estratégicas com seus fornecedores.

2.5.1 LOGÍSTICA E OPERAÇÕES

Neste estágio da cadeia estão incluídos todos os serviços descritos no capítulo 3. Entre os atores envolvidos neste estágio, destacam-se:

a. O desenvolvedor ou promotor dos projetos de parques eólicos – geralmente responsável pela prospecção de oportunidades e pela execução de todas as fases de desenvolvimento do projeto até o estágio onde ele esteja “pronto para construção”, quando então os direitos de construção do projeto são vendidos para um gerador/produtor de energia. Essas empresas identificam os locais com melhores ventos e firmam acordos com os proprietários dos terrenos e prefeituras a fim de assegurar a oportunidade. Também providenciam todas as licenças e autorizações necessárias;

b. Consultores – os desenvolvedores podem contratar consultores de projeto para auxiliar ou executor as tarefas relativas ao projeto básico (design) do parque e avaliação técnica do potencial da localidade. As atividades típicas de um consultor consistem em medição dos ventos, avaliação de restrições, elaboração de alternativas de leiaute e estudos de...
viabilidade. Podem ser contratados consultores específicos para cada atividade, o que, entretanto, dificulta a coordenação pelo maior número de atores envolvidos (GODOY, 2008).

c. Gerenciadores de projeto – normalmente fabricantes de aerogeradores ou firmas de engenharia. A execução de um projeto eólico é considerada de elevada complexidade. Envolve a contratação de diversas empresas, exigindo a sua coordenação, bem como o sequenciamento das atividades, e definição e controle dos prazos e custos para sua realização;

d. Empresas de transporte, movimentação e montagem – responsáveis respectivamente pelo transporte dos componentes até o parque, movimentação (horizontal e vertical) dos componentes e montagem final do aerogerador;

e. Empresas de O&M – após a construção do parque, os produtores de energia (proprietários) costumam terceirizar as atividades de operação e manutenção por períodos de cinco a dez anos, ou mais. Em função da facilidade com relação a peças de reposição e conhecimento do funcionamento do aerogerador, geralmente as OEMs fornecem este tipo de serviço.

2.5.2 PRODUTORES – PROPRIETÁRIOS DOS PARQUES

Os proprietários de parques eólicos detêm a concessão para exploração da energia por períodos geralmente de 20 a 35 anos (no caso do mercado regulado4), conforme o contrato e possíveis adendos. São as empresas responsáveis pela produção (ou geração) de energia eólica. Tendem a ser o centro da cadeia produtiva, centralizando todos os inputs e serviços necessários para a implantação do parque.

As mudanças que ocorreram no setor elétrico brasileiro (privatizações) resultaram em novos modos de contratação e implantação de grandes empreendimentos de energia (XAVIER, 2004) e em alterações significativas no perfil dos proprietários dos empreendimentos. Anteriormente os proprietários eram empresas estatais do próprio setor de energia elétrica e, atualmente, há agentes econômicos diversos, tais como: bancos, eletrointensivos, construtoras, fundos de pensão, empresas de energia elétrica privadas, etc. (PORTO, 2007).

4 No Brasil há atualmente dois ambientes de negócio e de contratos: o Ambiente de Contratação Regulada (ACR) – atualmente o principal ambiente de contratação de energia eólica – e o Ambiente de Contratação Livre (ACL). No caso do ACR as operações de compra e venda se dão através de leilões com o critério de menor tarifa em que somente as empresas distribuidoras de energia podem participar da compra. Os contratos resultantes do leilão são de longo prazo, em geral 20 anos, e têm a garantia de repasse dos custos de aquisição de energia às tarifas dos consumidores finais. No ACL, só podem comprar energia os chamados consumidores livres. Neste ambiente as relações comerciais são livremente pactuadas e regidas por contratos que estabelecem prazos e volumes (PINTO JR., 2007).
Observa-se também um crescente interesse de grandes empresas, como as do setor automotivo, em serem proprietárias de parques eólicos, e desta maneira suprirem parte da energia consumida por suas fábricas, dentro do conceito de autoprodução e em ambiente de mercado livre. Neste caso, a energia gerada pelo parque eólico é injetada no SIN e a empresa pode utilizar um volume equivalente em sua fábrica.

2.5.3 USO FINAL

Como etapa final da cadeia produtiva, pode ser considerado o estágio de distribuição de energia. O sistema de distribuição de energia elétrica no Brasil é regulado por resoluções da Agência Nacional de Energia Elétrica (ANEEL), as quais se orientam pelas diretrizes estabelecidas nas leis aprovadas pelo Congresso Nacional e nos decretos estabelecidos pelo Executivo Federal. No início dos anos 2000, antes da privatização do setor, não havia separação dos negócios entre geração e transmissão e distribuição. Hoje as distribuidoras são independentes e responsáveis pela conexão e pelo atendimento ao consumidor do ambiente regulado (PORTAL, 2013). O setor privado é responsável por cerca de 70% da energia distribuída no País, ficando os restantes 30% com empresas públicas, municipais, estaduais e federais (ANEEL, 2013).

2.5.4 P&D

Segundo pesquisa realizada pelo Centro de Gestão e Estudos Estratégicos (CGEE, 2012), os valores investidos em P&D no tema energia eólica, no Brasil, são baixos quando comparados às reais necessidades e ao desenvolvimento que essa fonte vem apresentando no país. Há programas de P&D/PD&I promovidos pela ANEEL, pelo CNPQ e pela FINEP ao longo da última década totalizando investimentos da ordem de R$ 60 milhões. O estudo identificou 68 grupos de pesquisa em distintas instituições, espalhadas por todo o País, demonstrando o interesse da academia nas diferentes temáticas do assunto. Porém, estes grupos são compostos por um pequeno número de participantes (entre um e cinco), sinalizando a carência de pesquisadores existente neste setor. Os grupos de pesquisa estão concentrados nos estados das regiões Nordeste e Sul, regiões com maior potencial eólico e maior número de parques instalados. As instituições envolvidas em PD&I no país incluem principalmente universidades e seus laboratórios, algumas fundações e institutos de pesquisa e, em menor número, laboratórios privados e empresas individuais.

O estudo do CGEE identificou como de alta relevância a necessidade de ações de pesquisa em diversas temáticas do setor e recomendou uma série de ações estratégicas e de investimento, tais como a formação de uma rede de pesquisas em energia eólica que congregaria laboratórios de todo o país e o aumento da oferta de editais específicos às linhas temáticas prioritárias (tecnologias de aerogeradores, recursos eólicos; materiais, política, economia e análises...
Algumas dessas ações já estão atualmente em andamento, como a criação da Rede Brasileira de Pesquisa em Energia Eólica (RBPEE), promovida pela Associação Brasileira de Energia Eólica (ABEEólica) com objetivo de estimular a cooperação entre empresas e entre estas e instituições públicas e privadas para o desenvolvimento da capacidade empresarial para inovar, aumentando a competitividade da fonte eólica no Brasil. Cabe ressaltar também o lançamento da chamada P&D Estratégico 017/2013, da ANEEL, para o “Desenvolvimento de Tecnologia Nacional de Geração Eólica”, que recebeu propostas que somam investimentos da ordem de R$ 250 milhões. As empresas que apresentaram propostas foram as Centrais Elétricas de Santa Catarina (Celesc), Companhia Hidrelétrica do São Francisco (Chesf), com dois projetos, Queiroz Galvão e Tractebel. Os projetos preveem o desenvolvimento de tecnologia nacional para geração eólica com aerogeradores de até 3MW, incluindo também componentes como pás, nacele, geradores, conversores e torres.

Cabe ressaltar que o maior interesse em PD&I na área de aerogeradores parece estar restrito às empresas locais, de origem brasileira ou latina, enquanto que as OEMs multinacionais tendem a centralizar seus esforços em suas matrizes no exterior.

A Figura 22 apresenta uma visão esquemática da cadeia de valor de bens e serviços.
3. RELATÓRIO DO MAPEAMENTO DA CADEIA PRODUTIVA NACIONAL DE BENS E SERVIÇOS

3.1 FABRICANTES NACIONAIS DE PARTES E COMPONENTES

De modo a facilitar o entendimento, a identificação dos fabricantes nacionais de partes e componentes da cadeia eólica pode ser distribuída e organizada por segmentos que compõem um aerogerador. Assim, os itens e seus respectivos fabricantes serão apresentados em formato de tabelas e conforme as segmentações utilizadas no Capítulo 2 – Relatório dos itens que compõem a cadeia produtiva de bens e serviços: fornecedores de aerogerador (montadoras ou O&Ms); fabricantes de grandes componentes – fabricantes de torres e fabricantes de pás; fabricantes de subcomponentes e insumos para torres; fabricantes de subcomponentes e insumos para o rotor – pás e cubo; e fabricantes de subcomponentes da nacele.

3.2 FORNECEDORES DE AEROGERADOR (MONTADORAS)

Os fornecedores de aerogeradores são em sua essência montadoras, pois podem receber componentes fabricados por outras empresas e realizar apenas a sua integração. A integração total do aerogerador acontece diretamente no parque eólico, pois somente neste momento a torre, o cubo, as pás e a nacele são acoplados. A atividade destas empresas, caracterizada como manufatura, está então associada à montagem da nacele e do cubo do rotor.

Cabe ressaltar que no Brasil, até pouco tempo, era comum a importação praticamente total da nacele e do cubo por parte das montadoras. Os critérios do FINAME para obtenção de financiamento das máquinas exigia um mínimo de conteúdo local da ordem de 60%, o que era atendido basicamente com a fabricação nacional apenas das pás e torres e complementada com outros poucos itens. Em dezembro de 2012, porém, o BNDES aprovou uma “metodologia específica para credenciamento e apuração do conteúdo local para aerogeradores”, estabelecendo metas físicas, divididas em etapas, que devem ser cumpridas pelos fabricantes de acordo com um cronograma previamente estabelecido. A metodologia visa aumentar gradativamente o conteúdo local dos aerogeradores, por meio da fabricação no País de componentes com alto conteúdo tecnológico e uso intensivo de mão de obra. Novos modelos de aerogeradores somente podem ser credenciados com base nesta nova metodologia. Os modelos de aerogeradores credenciados anteriormente somente podem ser financiados pelo

A instituição desta nova metodologia teve impactos imediatos na localização ou adequação das instalações e processos produtivos das montadoras no País. Os quadros a seguir apresentam as montadoras com atividade no País e sua situação de credenciamento na nova metodologia. As montadoras foram divididas por tipo de aerogerador – com ou sem caixa de engrenagem. Os dados de capacidade anual, atual ou prevista estão apresentados em número de aerogeradores, de cubos ou naceles, ou em MegaWatts (MW), respeitando a sistemática de apuração de cada montadora.

<table>
<thead>
<tr>
<th>OEM Aerog. SEM caixa</th>
<th>Local.</th>
<th>UF</th>
<th>Modelos Aerog. (BR)</th>
<th>Capacidade anual (prevista)</th>
<th>Situação FINAME BNDES</th>
<th>Site</th>
<th>Observação</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPSA Suape PE</td>
<td></td>
<td></td>
<td>UNIPOWER 1.5, 2.0 E 2.1 MW</td>
<td>400 aerogeradores, expansível para 500</td>
<td>OK</td>
<td>www.impsa.com</td>
<td></td>
</tr>
<tr>
<td>IMPSA Guaíba RS</td>
<td></td>
<td></td>
<td></td>
<td>(100 aerogeradores, expansível para 200)</td>
<td>OK</td>
<td>www.impsa.com</td>
<td>Em construção - previsão para agosto/2014.</td>
</tr>
<tr>
<td>WEG Jaraguá do Sul</td>
<td>SC</td>
<td></td>
<td>AGW 110-2.1 MW, AGW 100-2.2 e AGW 93-2.3</td>
<td>(100 MW, chegando a 200 MW em ago/14)</td>
<td>OK</td>
<td>www.weg.net</td>
<td>Em construção, três máquinas previstas para 2014 e 48 para 2015.</td>
</tr>
<tr>
<td>Wobben Sorocaba SP</td>
<td></td>
<td></td>
<td>0,8 a 3,0 MW</td>
<td>500 MW</td>
<td>OK</td>
<td>www.wobben.com.br</td>
<td>É subsidiária da ENERCON GmbH.</td>
</tr>
</tbody>
</table>

Quadro 9 – Montadoras de aerogerador SEM caixa de engrenagem

WOBKEN aumentou significativamente sua capacidade produtiva com a instalação da fábrica no Complexo Industrial e Portuário do Pecém, no Ceará. Em 2010, a WOBKEN iniciou as instalações da sua terceira unidade fabril, a Fábrica Móvel de Torres de Concreto, em Parazinho-RN.

A IMPSA Wind surgiu graças à sinergia das distintas unidades de negócios que a empresa tinha antes da criação do produto: da IMPSA Hydro adveio o conhecimento original de mecânica de fluidos e de geradores síncronos de polos salientes; da IMPSA Port System, o manejo de estruturas de grande altura e conversão de frequência; da ICSA, a subsidiária da IMPSA dedicada a sistemas de controle, o conhecimento da automação. Os aerogeradores da IMPSA Wind são tipo DDPM (Direct Driven Permanent Magnet). Possuem a turbina diretamente acoplada ao gerador, evitando a caixa multiplicadora de velocidade. A IMPSA desenvolveu seu próprio conceito de conversores de frequência chamado UNIPOWER®, no qual se fusionam turbina e gerador em uma única máquina, realizando simultaneamente a conversão da energia do vento em movimento e do movimento em eletricidade, melhorando assim a eficiência e a confiabilidade dos aerogeradores. A IMPSA Wind é um fornecedor de soluções totais incluindo, além dos aerogeradores, funções de suporte e o fornecimento sob modalidade “chave na mão” de parques eólicos.

Desde os anos 80 a IMPSA acompanha a evolução do setor de energia eólica através da pesquisa e desenvolvimento. Em 1998 foram iniciados os estudos sobre materiais compostos e no início de 2003, o desenvolvimento de tecnologia própria até conseguir o primeiro protótipo de 1 MW. Atualmente a empresa tem diversos projetos de desenvolvimento de produtos / inovação em parceria com universidades, laboratórios e centros de pesquisa.

A WEG é o primeiro fabricante de origem brasileira a entrar no setor de aerogeradores. Em 2010 a empresa firmou o primeiro acordo tecnológico com a empresa espanhola MTOI, o qual foi encerrado com a mudança de estratégia tecnológica. Em agosto de 2013 a empresa anunciou uma nova parceria com a Northern Power Systems, empresa pioneira e uma das líderes tecnológicas em aerogeradores permanent magnet direct drive (“PM/DD” ou imãs permanentes com caixa multiplicadora de velocidade). O acordo prevê a cooperação para que a WEG oferte no mercado sul-americano aerogeradores entre 2,1 e 2,3 MW com rotores das pás entre 93 e 110 metros de diâmetro, instalados em torres de até 120m de altura, o que atenderá aos requisitos técnicos de várias empresas de ventos. O primeiro fornecimento utilizando a nova tecnologia será para a Geradora Eólica Bons Ventos da Serra I S.A., numa parceria entre o Grupo Servtec (empresa brasileira com atuação nos ramos de engenharia e de energia) e diversos fundos de investimentos geridos pela Rio Bravo, um dos investidores mais ativos nesta indústria.

recentemente, a empresa assinou contrato com a Tractebel Energia para a construção de um aerogerador com potência nominal de 3,3 MW, com tecnologia 100% nacional. Este empreendimento está dentro da Chamada Pública da ANEEL nº 017/2013 de Projeto Estratégico para o Setor Elétrico Nacional, cujo tema é Desenvolvimento de Tecnologia Nacional de Geração Eólica, e atende a uma diretriz do governo federal que busca redução dos custos da energia elétrica e o desenvolvimento no
País de tecnologia de geração eólica competitiva mundialmente. O projeto, localizado ao lado do Complexo Termelétrico Jorge Lacerda, no Sul de Santa Catarina, deve estar pronto em quatro anos e o investimento é de R$ 160 milhões, sendo R$ 72 milhões aportados do Programa de P&D da TRACTEBEL Energia e R$ 88 milhões como contrapartida de investimentos da WEG. Além do desenvolvimento do primeiro aerogerador de tecnologia nacional e de tecnologias associadas, como da torre de concreto modular e das pás, este projeto também visa gerar conhecimento, desenvolver profissionais na área e deve movimentar toda uma cadeia de suprimento, estendendo-se para outros estados do Brasil, além de Santa Catarina.

<table>
<thead>
<tr>
<th>OEM</th>
<th>Local.</th>
<th>UF</th>
<th>Modelos Aerog. (BR)</th>
<th>Capacidade anual (prevista)</th>
<th>Situação FINAME</th>
<th>Site</th>
<th>Observação</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE</td>
<td>Campinas*</td>
<td>SP</td>
<td>GE 1,7-100 (1,7 MW) e 1,85-82,5 (1,85MW)</td>
<td>500 MW</td>
<td>OK</td>
<td>www.gepower.com www.geenergy.com</td>
<td>Montagem de cubos, expandida para atender novos requisitos do BNDES.</td>
</tr>
<tr>
<td>Alstom</td>
<td>Camaçari</td>
<td>BA</td>
<td>ECO 122 (2,7 MW)</td>
<td>400 MW</td>
<td>OK</td>
<td>www.alstom.com</td>
<td>Montagem de cubos e naceles já em operação.</td>
</tr>
<tr>
<td>Gamesa</td>
<td>Camaçari</td>
<td>BA</td>
<td>G97 (2,0 MW) e G114 (2,5 MW)</td>
<td>400 MW</td>
<td>OK</td>
<td>www.gamesacorp.com</td>
<td>Em construção fábrica de naceles - previsão set/2014.</td>
</tr>
<tr>
<td>Acciona</td>
<td>Simões Filho</td>
<td>BA</td>
<td>A3000 (3MW)</td>
<td>135 cubos e (100 naceles)</td>
<td>OK, obtido em setembro/13</td>
<td>www.accionenergia.com</td>
<td>Montagem de cubos já em operação e fábrica de naceles em construção - previsão para final de 2014.</td>
</tr>
<tr>
<td>Vestas</td>
<td>Maracanaú **</td>
<td>CE</td>
<td></td>
<td>200 cubos e (100 naceles)</td>
<td>OK</td>
<td>www.vestas.com</td>
<td>Previsão de início de fornecimento para final de 2015.</td>
</tr>
<tr>
<td>Siemens</td>
<td>Guarujás ***</td>
<td>SP</td>
<td></td>
<td>Processo não iniciado</td>
<td></td>
<td>www.energy.siemens.com; www.siemens.com.br/energy</td>
<td>Aguardando definição da tecnologia a ser utilizada no Brasil (com ou sem caixa de engrenagem).</td>
</tr>
<tr>
<td>Suzlon</td>
<td>Maracanaú</td>
<td>CE</td>
<td></td>
<td>Processo não iniciado</td>
<td></td>
<td>www.suzlon.com</td>
<td>Empresa pode estar deixando o mercado brasileiro.</td>
</tr>
</tbody>
</table>

Quadro 10 – Montadoras de aerogerador COM caixa de engrenagem
A GE conta atualmente com 450 turbinas eólicas no Brasil e até o fim de 2013 deve totalizar 1 GW de capacidade instalada, tornando a empresa uma das principais fornecedoras de turbinas que geram energia eólica para o país. Em Campinas, fabrica os hubs e também possui uma unidade de serviços para turbinas aeroderivadas, fundada em 2011. Além disso, o negócio de energias renováveis da GE conta com um Centro de Serviços para energia eólica, inaugurado em junho de 2013, localizado na cidade de Guanambi (BA). O centro possui capacidade para 100 técnicos que realizarão a manutenção das turbinas GE instaladas nos parques eólicos da região. A empresa está planejando uma série de novos investimentos no País, como a construção de uma nova unidade fabril, possivelmente em Camaçari, na Bahia.

A ALSTOM Wind projeta e fabrica uma ampla gama de turbinas eólicas onshore com capacidades de 1,67 MW a 3 MW. Além disso, oferece a construção completa de parques eólicos, incluindo: obras civis, infraestrutura elétrica (cabeamento, subestação), fornecimento e instalação de turbinas eólicas, startup e comissionamento, testes de recepção temporária e O&M. As plataformas tecnológicas da empresa para aerogeradores têm como base o conceito de trem de tração ALSTOM PURE TORQUE™, que protege a caixa de transmissão para maior confiabilidade. Neste conceito o cubo repousa sobre uma estrutura fundida sobre dois rolamentos, transferindo todas as cargas de deflexão do vento diretamente à torre. O eixo fica conectado à parte frontal do cubo e inserido na estrutura fundida maior, transferindo apenas o torque à caixa de transmissão. A fábrica de cubos e naceles está localizada em Camaçari/BA. A empresa recentemente inaugurou sua primeira fábrica de torres na América Latina, em Canoas/RS, e tem planos para instalação de uma segunda unidade no nordeste. Conforme informado pela empresa, no Brasil a Alstom já assinou mais de 1.700 MW em contratos de aerogeradores. Seu principal cliente é a Renova Energia, com quem tem um acordo de longo prazo para o fornecimento de 1.200 MW em turbinas (site Recharge, em 10/01/14).

A GAMESA, montadora de origem espanhola, tem seus centros produtivos globais na Espanha e China, e unidades produtivas na Índia, EUA e Brasil. No Brasil a empresa tem uma fábrica de montagem de cubos operando em Camaçari/BA e está em fase de instalação de uma unidade para montagem de naceles, de forma a atender os requisitos do FINAME do BNDES. A GAMESA totalizou em 2013, somente no Brasil, mais de 1.000 MW em contratos de provisão (conforme site da revista Exame, em 05/12/13), sendo que no leilão A-5, de 13 de dezembro, a montadora agregou pelo menos mais 180 MW em contratos (site Recharge, 16/12/13).

A ACCIONA, outra montadora de origem espanhola, obteve recentemente o credenciamento no BNDES. A empresa já conta com uma fábrica de cubos na Bahia e está construindo a fábrica de montagem de naceles. Esta última deverá ficar pronta no final de 2014 e terá capacidade de
produção de 100 unidades para utilização no aerogerador AW 3000, com potência de 3 MW. A fábrica de Simões Filho é a quinta no mundo da ACCIONA Windpower, que tem dois centros de montagem de aerogeradores na Espanha e um nos Estados Unidos, assim como uma fábrica de pás eólicas na Espanha. A fábrica faz parte da estratégia da companhia para aumentar sua presença no mercado brasileiro, onde recentemente assinou seu primeiro contrato, com a empresa CPFL Renováveis, para a provisão de 40 aerogeradores cuja potência soma 120 MW (conforme site de economia do Uol, em 11/12/12).

A Vestas assinou recentemente carta de intenções junto ao BNDES para credenciamento de suas máquinas até final de 2015. As montadoras Siemens e Suzlon ainda não iniciaram processo de credenciamento no BNDES e, portanto, há dúvidas sobre sua permanência no mercado brasileiro.

No anexo são apresentados quadros com mais detalhes técnicos das tecnologias e conceitos utilizados pelas montadoras citadas neste capítulo.

3.2.1 FABRICANTES DE TORRE

As torres, por suas grandes dimensões (e massa), além do alto impacto no custo do aerogerador, eram preferencialmente adquiridas de fabricantes locais ou fabricadas localmente em unidades próprias das montadoras. A nova regra do BNDES passou a exigir, inicialmente, a fabricação das torres no País, com pelo menos 70% em peso das chapas de aço fabricadas no Brasil ou concreto armado de procedência nacional. Gradativamente esta exigência é acrescida de outras como o uso de elementos internos e percentual de forjados (flanges) de procedência nacional.

O Quadro 11 e o Quadro 12 apresentam respectivamente os fabricantes de torres de aço e de concreto instalados (ou em processo de instalação) no País. Há atualmente fabricantes originalmente nacionais (como ENGEBSA, ICEC-SCS, BRASILSAT, INTECNIAL, MÁQUINAS PIRATININGA e TECNOMAQ) e outros pertencentes a grupos estrangeiros (GESTAMP, TORREBRAS e INNEO). Também há montadoras de aerogerador que têm suas próprias fábricas de torre, de modo a diminuir a dependência de terceiros (WOBBEN e ALSTOM). Outra situação é a da GAMESA, que tem participação no grupo WINDAIR, proprietário da TORREBRAS. Novos fabricantes, especialmente para torres de concreto, estão iniciando ou se preparando para entrar no mercado brasileiro, como é o caso da CTZ Eolic Tower, da EOLICABRAS e da CASSOL. Cabe destacar também a entrada da BRAMETAL, primeiro fabricante de torres treliçadas do País, com utilização de tecnologia alemã.
<table>
<thead>
<tr>
<th>Fabricante</th>
<th>Localização</th>
<th>UF</th>
<th>Capacidade anual (previsão)</th>
<th>Site</th>
<th>Observação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Torrebras</td>
<td>Camaçari</td>
<td>BA</td>
<td>220</td>
<td>www.windar-renovables.es</td>
<td></td>
</tr>
<tr>
<td>Intecnial</td>
<td>Erechim</td>
<td>RS</td>
<td>100</td>
<td>www.intecnial.com.br</td>
<td>Produção atual é de cerca de 50 torres / ano.</td>
</tr>
<tr>
<td>ICEC-SCS</td>
<td>Mirassol</td>
<td>SP</td>
<td>100</td>
<td>www.scsdobrasil.com.br</td>
<td></td>
</tr>
<tr>
<td>Alstom</td>
<td>Canoas</td>
<td>RS</td>
<td>120</td>
<td>www.alstom.com</td>
<td>Fábrica recentemente inaugurada.</td>
</tr>
<tr>
<td>Alstom</td>
<td>Jacobina</td>
<td>BA</td>
<td>(150)</td>
<td>www.alstom.com</td>
<td>Futura fábrica a ser instalada (em parceria com a Andrade Gutierrez).</td>
</tr>
</tbody>
</table>

Quadro 11 – Fabricantes nacionais de torres de aço
A fabricação das torres de aço cônicas envolve basicamente operações de caldeiraria – corte das chapas, dobramento e solda. As torres são produzidas em três ou quatro segmentos, conforme projeto da montadora, denominados seções ou tramos. Uma vez fabricados os tramos, estes são submetidos a processos de preparação superficial e acabamento tais como: jateamento abrasivo, metalização e pintura (externa e interna).

<table>
<thead>
<tr>
<th>Fabricante</th>
<th>Torres de Concreto</th>
<th>Localização</th>
<th>UF</th>
<th>Capacidade Anual</th>
<th>Site</th>
<th>Observação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wobben</td>
<td></td>
<td>Parazinho</td>
<td>RN</td>
<td>500</td>
<td>www.wobben.com.br</td>
<td>Capacidade variável.</td>
</tr>
<tr>
<td>CTZ Eolic Tower</td>
<td></td>
<td>Fortaleza</td>
<td>CE</td>
<td>120</td>
<td></td>
<td>Conceito de fábricas móveis.</td>
</tr>
<tr>
<td>Inneo</td>
<td>Trairi Casa Nova</td>
<td></td>
<td>CE</td>
<td>250</td>
<td>www.inneotorres.com.br</td>
<td>Matriz Espanhola. Fábricas são móveis e produzem diferentes alturas de torres (80, 100 e 120m).</td>
</tr>
<tr>
<td>Eolicabráis/Serveng</td>
<td>São Paulo (sede)</td>
<td></td>
<td>SP</td>
<td>40 a 50</td>
<td>www.gruposerveng.com.br</td>
<td>Em desenvolvimento - parceria com empresas nacionais e espanhola, previstas unidades móveis no RS, RN e CE.</td>
</tr>
<tr>
<td>Cassol</td>
<td>São José</td>
<td></td>
<td>SC</td>
<td>Não divulgada</td>
<td>www2.cassol.ind.br</td>
<td>Em desenvolvimento - empresa com tradição em pré-fabricados.</td>
</tr>
</tbody>
</table>

Quadro 12 – Fabricantes nacionais de torres de concreto

3.2.2 FABRICANTES DE PÁS

As pás, como as torres, são componentes de grandes dimensões e de significativa representatividade no custo de um aerogerador (cerca de 20%) e, desta forma, também eram preferencialmente adquiridas de fabricantes locais. Como a nova metodologia do BNDES passou a exigir a fabricação de pás no Brasil, em unidade própria ou de terceiros, para fins de financiamento, esta preferência foi ainda mais reforçada.

O Quadro 13 apresenta os fabricantes de pás eólicas com fábricas instaladas no País.
<table>
<thead>
<tr>
<th>Fabricante de pás</th>
<th>Localização</th>
<th>UF</th>
<th>Capacidade anual (unidades)</th>
<th>Site</th>
<th>Observação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tecsis</td>
<td>Sorocaba</td>
<td>SP</td>
<td>6000</td>
<td>www.tecsis.com.br</td>
<td>Para fornecimento local e exportação.</td>
</tr>
<tr>
<td>Tecsis</td>
<td>Camaçari</td>
<td>BA</td>
<td>Não divulgada</td>
<td></td>
<td>A iniciar construção.</td>
</tr>
<tr>
<td>Wobben</td>
<td>Sorocaba</td>
<td>SP</td>
<td>1500 (total)</td>
<td>www.wobben.com.br</td>
<td>Para fornecimento local e exportação.</td>
</tr>
<tr>
<td>Wobben</td>
<td>Pecém</td>
<td>CE</td>
<td>600</td>
<td>www.aerisenergy.com.br</td>
<td>Fábrica recentemente inaugurada. JV com a empresa brasileira Eólice.</td>
</tr>
<tr>
<td>Aeris</td>
<td>Pecém</td>
<td>CE</td>
<td>600</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LM Wind Power</td>
<td>Suape</td>
<td>PE</td>
<td>1000</td>
<td>www.lmwindpower.com</td>
<td></td>
</tr>
</tbody>
</table>

Quadro 13 – Fabricantes nacionais de pás eólicas

No Brasil a WOBBEN fabrica pás para seus aerogeradores em duas unidades, uma localizada em Sorocaba/SP e outra em Pecém/CE. As pás produzidas nestas instalações atendem às vendas locais e também são exportadas.

A TECSIS, empresa genuinamente brasileira, produz pás no País para o mercado doméstico e principalmente para o mercado externo (aproximadamente 70% da produção). As pás exportadas suprem principalmente os aerogeradores da montadora GE e se destinam geralmente ao mercado americano. A empresa é hoje um dos maiores fabricantes mundiais de pás eólicas, tem 12 plantas industriais localizadas no Estado de São Paulo, na região de Sorocaba, e tem planos de instalar uma nova unidade em Camaçari, no Estado da Bahia. Esta unidade está sendo planejada de modo a atender prioritariamente o mercado local. A empresa produz atualmente dez tipos diferentes de pás e é responsável também pela customização dos projetos.

Outro fabricante brasileiro, a AERIS iniciou suas atividades em 2011 atendendo pedidos da montadora SUZLON. Localizada em Pecém, no Ceará, atualmente a empresa produz pás de 57 metros utilizadas nos aerogeradores de 3 MW da ACCIONA. A empresa também está desenvolvendo projeto para fabricação de pás para a WEG.

A LM Wind Power, mais recente fabricante a se instalar no Brasil, é uma joint venture desta empresa dinamarquesa com a brasileira EÓLICE, que detém 49% das ações e é responsável pela parte de infraestrutura. A fábrica está instalada em Recife, próxima ao porto de Suape, e está direcionada para a produção de pás apropriadas para o segmento de geradores de 2 e 3 MW e com até 55 metros de comprimento (conforme site do Jornal da Energia em 11/12/13).
3.2.3 FABRICANTES DE SUBCOMPONENTES E INSUMOS PARA TORRES

As torres, por suas especificidades técnicas demandadas pelas montadoras e pelo considerável investimento envolvido, são fabricadas somente sob encomenda. O fabricante de torres pode se responsabilizar pela compra dos materiais, subcomponentes e outros insumos para a fabricação das torres ou pode apenas executar o serviço de manufatura, assumindo a compra apenas dos consumíveis. Essa definição depende do modelo de contratação das montadoras. Há atualmente no Brasil montadoras que fornecem todo o material e subcomponentes e outras que não participam das compras, adquirindo o item pronto. Neste último caso, o fabricante de torres necessita de significativo capital de giro para sua operação, tendo então algumas vezes um banco como parceiro.

O Quadro 14 apresenta os subcomponentes e insumos utilizados na fabricação de torres de aço e os respectivos fornecedores com instalações no Brasil.

<table>
<thead>
<tr>
<th>Estrutura torre de aço</th>
<th>Fabricante</th>
<th>Localização</th>
<th>UF</th>
<th>Site</th>
<th>Observação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapas de aço laminado</td>
<td>Usiminas</td>
<td>Ipatinga MG</td>
<td>MG</td>
<td>www.usiminasmecanica.com.br</td>
<td>Único fornecedor no Brasil.</td>
</tr>
<tr>
<td>Flanges</td>
<td>Uniforja</td>
<td>Diadema SP</td>
<td>SP</td>
<td>www.uniforja.com.br</td>
<td>Em estudo investimentos para adequação da capacidade.</td>
</tr>
<tr>
<td></td>
<td>Bardella</td>
<td>Guarulhos SP</td>
<td>SP</td>
<td>www.bardella.com.br</td>
<td>Em estudo instalação de linha específica de flanges para torres.</td>
</tr>
<tr>
<td>Fixadores</td>
<td>Friedberg</td>
<td>Monte Mor SP</td>
<td>SP</td>
<td>www.august-friedberg.com</td>
<td>Fabrica também chumbadores para fundação, fixadores para o gerador e pás.</td>
</tr>
<tr>
<td>Portas</td>
<td>Alius</td>
<td>Sorocaba SP</td>
<td>SP</td>
<td>www.alusaluminium.com.br</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Brasil Iraeta</td>
<td>www.grupoiraeta.com</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Escotilhas</td>
<td>Atlanta</td>
<td>Sorocaba SP</td>
<td>SP</td>
<td>www.atlantalaser.com.br</td>
<td></td>
</tr>
</tbody>
</table>
As chapas de aço laminado, que após os processos de corte, dobra e solda constituem a estrutura básica das torres cônicas, são fabricadas no Brasil pela USIMINAS, que detém o monopólio deste tipo de aço. Os custos são 30% superiores às chapas de procedência chinesa ou coreana. Como as torres representam aproximadamente 25% do custo do aerogerador, há um impacto significativo do uso de material nacional no custo final da máquina. Esta questão de maior custo do aço nacional em relação ao mercado internacional afeta também diversos subcomponentes do aerogerador, diminuindo a competitividade da indústria nacional.

No caso das flanges, que para atender ao novo FINAME devem ser pelo menos 60% de procedência nacional a partir de janeiro de 2015, há pelo menos três empresas interessadas em fabricá-las localmente. As torres de aço utilizam "sets" geralmente de seis a dez flanges em sua estrutura, correspondendo aproximadamente a uma massa total de 16 a 25 toneladas por torre. Os diâmetros variam normalmente entre 2,5 a 6 metros, dependendo da posição na torre. As flanges utilizam um tipo de aço específico e são preferencialmente produzidas sem costura por processo de forjamento seguido de laminação. Outro processo possível é o de calandragem resultando em flanges com costura. Este tipo de flange, porém, não é aceito por algumas montadoras.

A capacidade de fabricação para o caso das flanges ainda não é conhecida, uma vez que potenciais fabricantes como BARDELLA e UNIFORJA ainda estão avaliando a realização de investimentos na aquisição de equipamentos específicos para esta operação. A Brasil IRAETA, subsidiária do grupo espanhol Iraeta, projeta o atendimento de 1000 torres/ano, a princípio com flanges calandradas. A UNIFORJA, que já fornece anéis forjados e laminados para a fabricação de rolamentos, estuda a possibilidade de fornecimento de flanges laminadas. Para a fabricação de flanges, que têm diâmetros maiores que os anéis para rolamento, são necessários investimentos na aquisição de tornos de forjaria e de tratamento térmico, de uma prensa e uma laminadora. Hoje a empresa tem uma máquina para laminação de flanges e uma para laminação de anéis para rolamento e precisaria de uma laminadora adicional para flanges de 5 a 6 m. A capacidade atual para a indústria eólica com as duas laminadoras existentes é de 2500 toneladas/mês (flanges e anéis). A matéria-prima básica para a fabricação de flanges são barras e lingotes de aço, fornecidos pela GERDAU, de um tipo especial que atende às normas da eólica.

Não parece haver maiores dificuldades no fornecimento local de fixadores, também chamados de parafusos de conexão. A REX, por exemplo, está aproveitando seu histórico no fornecimento...
para segmento de Petróleo & Gás no atendimento do eólico. Portas e escotilhas, que não são itens explicitamente exigidos pelo BNDES, são ainda importadas.

Um item de grande exigência técnica são as tintas para proteção anticorrosiva da torre. O revestimento das torres deve resistir de 15 a 20 anos em ambientes de alta agressividade, como as áreas litorâneas. O volume de tintas necessário para pintura de uma torre metálica, externa e internamente, é bastante significativo, podendo chegar a 1.500 litros por torre. Geralmente são aplicadas três camadas na parte externa e duas camadas na parte interna – menos suscetível aos efeitos das intempéries. O processo de pintura é considerado muitas vezes um gargalo no ciclo de fabricação da torre. Entre cada camada é necessário aguardar um intervalo de secagem de até cinco horas, e o início da montagem dos elementos internos também depende da secagem completa do sistema de pintura. Há oportunidade, portanto, para sistemas de secagem mais rápida e que exijam menor número de produtos, mas que ainda assim atendam às exigências técnicas de resistência anticorrosiva e durabilidade. Cabe considerar que o processo de qualificação de um sistema de pintura costuma ser de longo prazo, podendo levar mais de um ano para sua conclusão. Algumas montadoras não têm ainda fabricantes nacionais homologados ou preferem utilizar o mesmo produto usado no exterior, optando então pela importação deste insumo.

O Quadro 15 apresenta os subcomponentes e insumos utilizados na fabricação de torres de concreto e os respectivos fornecedores com instalações no Brasil.

<table>
<thead>
<tr>
<th>Estrutura torre de concreto</th>
<th>Fabricante</th>
<th>Localização</th>
<th>UF</th>
<th>Site</th>
<th>Observação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Concreto</td>
<td>Produto próprio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Moldes</td>
<td>Produto próprio</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insertos metálicos</td>
<td>Tensacciai</td>
<td>São Paulo</td>
<td>SP</td>
<td>www.tensacciai.it</td>
<td>Empresa do grupo Arcelormittal</td>
</tr>
<tr>
<td></td>
<td>ProtendidosDYWIDAG</td>
<td>Guarulhos</td>
<td>SP</td>
<td>www.dywidag.com.br</td>
<td></td>
</tr>
<tr>
<td>Aditivos para concreto e adesivos (montagem e reparo de pré-moldados)</td>
<td>MC-Bauchemie Brasil</td>
<td>Vargem Grande Paulista</td>
<td>SP</td>
<td>mc-bauchemie.com.br</td>
<td>Subsidiária do grupo multinacional alemão MC-Bauchemie.</td>
</tr>
</tbody>
</table>

Quadro 15 – Fabricantes nacionais de subcomponentes e insumos para torres de concreto

Os elementos internos da torre são, atualmente, em sua maioria, importados de fabricantes europeus, mas serão exigidos pelo BNDES a partir de janeiro de 2014. Já há ou estão surgindo opções locais de fornecimento para praticamente todos os itens. A preferência dos compradores é por fornecedores que ofereçam o conjunto completo. Uma questão importante é o atendimento aos requisitos de segurança. Em função destas exigências, o processo de homologação dos internos pode demandar longos períodos até sua finalização, retardando a entrada de fabricantes nacionais que sejam novos entrantes neste segmento.

O custo dos elementos internos representa uma pequena parcela do custo da torre.

O Quadro 16 apresenta os elementos internos das torres e os correspondentes fabricantes com instalações no País.
<table>
<thead>
<tr>
<th>Elementos internos</th>
<th>Fabricante</th>
<th>Localização</th>
<th>UF</th>
<th>Site</th>
<th>Observação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escada</td>
<td>Atlanta</td>
<td>Sorocaba</td>
<td>SP</td>
<td>www.atlantalaser.com.br</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kathrein</td>
<td>São Paulo</td>
<td>SP</td>
<td>www.kathrein.com.br</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Baram</td>
<td>Sapucaia do Sul</td>
<td>RS</td>
<td>www.baram.com.br</td>
<td></td>
</tr>
<tr>
<td>Plataformas</td>
<td>Atlanta</td>
<td></td>
<td></td>
<td>www.atlantalaser.com.br</td>
<td></td>
</tr>
<tr>
<td>Iluminação</td>
<td>Nortel (Rexel)</td>
<td></td>
<td></td>
<td>www.nortel.com.br</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phelps Dodge</td>
<td>Poços de Caldas</td>
<td>MG</td>
<td>www.pdicbrasil.com</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ver Rotor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Quadro 16 – Fabricantes nacionais de elementos internos das torres
3.2.4 FABRICANTES DE SUBCOMPONENTES E INSUMOS PARA O ROTOR – PÁS E CUBO

A pás é constituída basicamente de uma estrutura em material compósito, com núcleos centrais de espuma de PVC e madeira balsa. As pás produzidas no Brasil pela TECSIS, WOBKEN e AERIS utilizam resina do tipo epóxi na constituição do compósito. A LM Wind Power, que está iniciando sua produção, utiliza resina poliéster. A fibra empregada no compósito geralmente é a fibra de vidro, mas alguns modelos utilizam também fibra de carbono. A fibra de vidro é utilizada na forma de tecido e há tipos que conferem diferentes propriedades mecânicas e de resistência ao compósito.

A nova regra do BNDES exige a fabricação das pás no Brasil, e o índice de nacionalização é crescente a partir de janeiro de 2014. O índice inicia com um mínimo de 40% em peso, chegando a um mínimo de 60% em janeiro de 2015. Há, porém, critérios específicos para esta apuração envolvendo a resina e sua mistura (blend) e os fios de fibra e sua transformação em tecido. Para atender aos percentuais de conteúdo local através destes materiais, no mínimo a mistura da resina e a tecelagem dos fios devem ser feitas no Brasil. Portanto, neste caso – utilização de mistura local e não da resina local e utilização de tecido local e não de fio local – a montadora deve nacionalizar um item adicional da coluna B da tabela do BNDES para cada concessão.

O Quadro 17 apresenta os elementos e insumos utilizados na manufatura das pás e os respectivos fabricantes nacionais.

<table>
<thead>
<tr>
<th>Estrutura da pás</th>
<th>Fabricante</th>
<th>Localização</th>
<th>UF</th>
<th>Site</th>
<th>Observação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tecido de fibra de vidro</td>
<td>Owens Corning</td>
<td>Rio Claro</td>
<td>SP</td>
<td>www.owenscorning.com</td>
<td>Fabricação local de alguns tipos de fios e tecidos.</td>
</tr>
<tr>
<td></td>
<td>Saertex*</td>
<td>Indaiatuba</td>
<td>SP</td>
<td>www.saertex.com</td>
<td>Fabricação local de TNTs de fibras orientadas.</td>
</tr>
</tbody>
</table>
Atualmente a DOW é a única produtora nacional de resina epóxi. Outros fornecedores, como a MOMENTIVE, que atualmente atende o mercado nacional com resina importada, prepara a mistura (blend) no Brasil.

A OWENS CORNING fabrica no País desde 2005 a maior parte dos fios (rovings) usados na confecção de tecidos de fibra de vidro utilizados nas pás eólicas e é atualmente a única fabricante nacional de fios. Em 2008 a empresa instalou uma unidade específica para a tecelagem dos tecidos.

Alguns tipos especiais de tecido de fibra de vidro são importados pela própria OWENS CORNING e os tecidos de fibra de carbono são importados de empresas como a alemã SAERTEX. A filial da SAERTEX no Brasil, instalada na cidade de Indaiatuba (SP), produz localmente TNTs - Tecidos não-tecidos de fibras orientadas - e a CPIC (que já tem uma unidade produtiva no Brasil atendendo outros segmentos) planeja a instalação de teares no Brasil para tecelagem específica dos tecidos utilizados nas pás eólicas. Neste caso, os fios continuariam a ser importados, mas o processamento do tecido seria feito no País.

Há fabricantes locais de parafusos (ou fixadores) e de adesivos fixadores, estes últimos utilizados nas uniões estruturais e travamento e vedação das roscas. Os demais itens utilizados na manufatura das pás são em sua maioria importados. As espumas de PVC e a madeira balsa são importadas de empresas como a 3A Composites, da Suíça, e IINCOM, da Espanha. Adesivos e selantes também são fornecidos por empresas estrangeiras como, por exemplo, a ITW e PLEXUS. As massas e tintas para acabamento e proteção da pá são importadas de empresas alemãs, como BASF, MANKIEWICZ e BERGOLIN. Além desses itens, há outros materiais importados que são utilizados durante o processamento das pás, tais como o plástico de vácuo e outros itens para infusão que após este processo são descartados, não contabilizando assim para o cálculo do índice de nacionalização.

Uma questão a ser considerada é que o laminado ou compósito obtido no processo de infusão precisa ser certificado pela montadora do aerogerador. Esta exigência implica em que o fabricante da pá realize uma nova certificação a cada vez que alterar a resina ou algum dos
tecidos utilizados. Esses processos de certificação levam geralmente de seis meses a um ano, ou mais, dependendo da ocupação dos laboratórios (estrangeiros) que realizam estes testes. Então, no caso de o laminado ter sido certificado com insumos importados, a substituição destes por materiais nacionais implicará em um novo processo de certificação que pode dificultar o atendimento dos prazos/marcos do BNDES.

Outra questão técnica importante é o fato de os projetos das pás serem normalmente definidos pelas montadoras e diferirem em termos de composição e peso final da pá. Em alguns projetos são utilizados percentuais significativos de tipos especiais de tecidos (mantas e tecidos de alto módulo de elasticidade) que não são fabricados nacionalmente e que, pela baixa demanda / escala de produção, não despertam interesse dos fabricantes para instalação de fábricas no Brasil.

Essas situações são dificultadoras do atendimento às exigências de conteúdo local por parte de alguns fabricantes/montadoras, principalmente a partir de 2015, quando o índice de nacionalização mínimo das pás passa a ser de 60%. Os fabricantes de pás receiam ficar expostos a uma situação em que o fornecedor é monopolista, tanto com relação ao uso de resina local quanto de fios ou tecidos locais, resultando em eventuais custos mais elevados para estes itens. Assim, a entrada de novos fabricantes no País para fornecimento do blend local e do tecido local é muito desejada.

No Quadro 18 são apresentados os subcomponentes que fazem parte do cubo e os correspondentes fabricantes nacionais.

<table>
<thead>
<tr>
<th>Diversos</th>
<th>Fabricante</th>
<th>Localização</th>
<th>UF</th>
<th>Site</th>
<th>Observação</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BrMetals</td>
<td>Matozinho</td>
<td>MG</td>
<td></td>
<td>Fundição, usinagem, metalização e pintura. Capacidade de fundição de 450 cubos/ano e de usinagem de 300 cubos/ano.</td>
</tr>
<tr>
<td></td>
<td>Stepan</td>
<td>Campinas</td>
<td>SP</td>
<td>www.stepan.com.br</td>
<td>Não é fornecedor do cubo, apenas dos serviços de usinagem associados.</td>
</tr>
</tbody>
</table>
As exigências do BNDES para o cubo do rotor iniciam com a montagem, em unidade própria, do cubo no Brasil, com fundido de procedência nacional (carcaça do cubo fundida, usinada e pintada no País). Gradativamente vão sendo solicitadas as inclusões dos seguintes subcomponentes: carenagem do cubo, rolamentos de passo, sistema de acionamento do controle do passo e painéis de controle de passo. Em janeiro de 2015, estes quatro últimos itens passam a ser de fabricação obrigatoriamente local, mas a carcaça do cubo poderá ser substituída por outro subcomponente classificado pelo BNDES como tipo A (ver metodologia), além de a montagem poder ser realizada em instalação local de terceiros.

Segundo informações dos fabricantes, hoje existe sobre capacidade de fornecimento de carcaças de cubo. A ROMI, por exemplo, tem capacidade em fundição para 10.000 a 20.000 toneladas, o que atenderia a cerca de 500 aerogeradores/ano. Esta capacidade pode ainda ser aumentada a partir de investimentos na ampliação da fábrica e na aquisição de novos fornos. Outros dois fornecedores deste subcomponente são a VOITH e a BR METALS. A VOITH

Quadro 18 – Fabricantes nacionais de subcomponentes do cubo

<table>
<thead>
<tr>
<th>Diversos</th>
<th>Fabricante</th>
<th>Localização</th>
<th>UF</th>
<th>Site</th>
<th>Observação</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Atlanta</td>
<td>Sorocaba</td>
<td>SP</td>
<td>www.atlantalaser.com.br</td>
<td>Carenagem de aluminio.</td>
</tr>
<tr>
<td>Rolamentos do passo (pitch)</td>
<td>Robrasa</td>
<td>Diadema</td>
<td>SP</td>
<td>www.robrasa.com.br</td>
<td>Único fabricante local. Cap. atual em 200 toneladas/mês ou aprox. 150 rolamentos/mês, o que atenderia a cerca de 1,2 GW/ano.</td>
</tr>
<tr>
<td></td>
<td>BrMetals</td>
<td>-</td>
<td></td>
<td></td>
<td>Possível opção nacional.</td>
</tr>
<tr>
<td></td>
<td>Voith</td>
<td>www.voith.com</td>
<td></td>
<td></td>
<td>Possível opção nacional.</td>
</tr>
<tr>
<td>Sistemas de Lubrificação</td>
<td>Eximport</td>
<td>São Paulo</td>
<td>SP</td>
<td>www.eximport.com.br</td>
<td></td>
</tr>
<tr>
<td>Lubrificantes</td>
<td>SKF</td>
<td>Cajarar</td>
<td>SP</td>
<td>www.skf.com</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Fuchs do Brasil</td>
<td>Barueri</td>
<td>SP</td>
<td>www.fuchsbr.com.br</td>
<td></td>
</tr>
</tbody>
</table>
dedica atualmente uma capacidade de cerca de 350 toneladas/mês de fundição (com ferro nodular) para o segmento eólico. A BR METALS agrega à fundição as operações subsequentes de usinagem, metalização e pintura, embora não tenha os mesmos níveis de capacidade. A empresa estuda a aquisição de uma máquina nova de usinagem, reduzindo assim sua dependência de terceiros. A BARDELLA, embora não forneça o fundido do cubo, fornece serviços de usinagem, metalização e pintura para o acabamento deste item e tem atualmente capacidade para 300 cubos/ano. A STEPAN é outra empresa que fornece serviços de usinagem para os cubos, com capacidade atual de 16 cubos/semana (aprox. 800 cubos/ano). Para 2015 um novo fornecedor de serviços de usinagem e pintura para cubos deve iniciar operação, a ST METALS, com capacidade de 15 cubos/semana, inicialmente, chegando ao final de 2014 a 26 cubos/semana. Entretanto, algumas montadoras que têm configurações mais complexas de cubo ou tamanhos de cubo maiores (para modelos de aerogerador de maior porte) percebem dificuldades no atendimento de suas demandas envolvendo os processos de fundição e usinagem. Cabe ressaltar também a dificuldade logística associada ao fluxo produtivo do cubo. As empresas de fundição precisam enviar os cubos (peças de 3 a 18 toneladas) até as empresas de usinagem e estas às empresas de pintura, por vezes localizadas em outras cidades, aumentando consideravelmente o tempo de ciclo de produção do produto final.

A carenagem do cubo/cone (assim como a da nacele) é feita geralmente de material compósito ou de alumínio especial. Segundo os fabricantes, o mercado brasileiro a princípio tem capacidade de atender a demanda atual e com índices de nacionalização acima de 60%. No caso das carenagens em compósito, a resina utilizada é normalmente a resina poliéster, fabricada localmente por empresas como CRAY-VALLEY e ELIKEIROZ. A fibra de vidro eventualmente precisa ser importada, nos casos de necessidade de volumes abaixo do mínimo produzido pela OWENS CORNING. Isto é, alguns tipos de tecido só são produzidos no Brasil pela OWENS CORNING se o volume de compra do cliente for igual ou superior a um valor mínimo que justifique a ocupação do tear com este produto. Produtos de acabamento, como gelcoat, são fabricados no Brasil pelas mesmas empresas fabricantes da resina poliéster. A maior dependência de materiais importados está relacionada aos insumos utilizados na infusão: espumas de PET e outros materiais de núcleo. A tecnologia é dominada por empresas estrangeiras e a demanda ainda é considerada baixa para a localização da produção no Brasil.

Algumas montadoras percebem dificuldades em termos de domínio tecnológico e mão de obra qualificada para fabricação da carenagem por parte de seus fornecedores.

Atualmente os rolamentos do passo (pitch), também chamados rolamentos de giro da pá, são fabricados localmente apenas pela ROBRASA. Outros fornecedores como FAG, SKF e IMO trazem os rolamentos de suas unidades no exterior. Os rolamentos da ROBRASA utilizam anéis nacionais fornecidos pela UNIFORJA e demais itens importados – esferas, gaiolas e retentores. O produto final, com o uso dos anéis nacionais, contabiliza mais de 85% de conteúdo local. Aqui se identifica um possível gargalo produtivo. De um lado a produção da UNIFORJA pode representar um gargalo, pois a empresa tem somente uma máquina (laminadora), antiga, para a fabricação dos anéis. De outro, a ROBRASA tem limitações em seu processo de usinagem.
A capacidade atual da ROBRASA é de 200 toneladas/mês (cerca de 100 rolamentos/mês), devendo chegar a 300 toneladas/mês (cerca de 150 rolamentos/mês) em novembro de 2014. Cada aerogerador utiliza três rolamentos de passo e diferentes tamanhos de aerogerador (tamanho/massa do rolamento) representam diferenças significativas na capacidade de fabricação. Considerando-se um tamanho médio de aerogerador de 2 MW, a capacidade da ROBRASA chegaria a 1,2 GW/ano. Para uma demanda de 2 GW/ano, atendendo aos requisitos do BNDES para 2015, a empresa necessita investir em maquinário adicional.

Algumas montadoras utilizam extensores na conexão do rotor com as pás. Possíveis fornecedores locais para este subcomponente são os fabricantes do fundido do cubo.

Os lubrificantes são utilizados nos rolamentos do passo e do rotor. Os fornecedores destes insumos são geralmente grandes empresas multinacionais com instalações no País para elaboração do produto final — o óleo básico (80% da composição) que é normalmente importado.

O Quadro 19 apresenta os subcomponentes específicos do sistema de passo.

<table>
<thead>
<tr>
<th>Sistema de Passo (Pitch)</th>
<th>Fabricante</th>
<th>Localização</th>
<th>UF</th>
<th>Site</th>
<th>Observação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kits de Interligações</td>
<td>Hine</td>
<td>www.hine.com.br</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Engrenagens e redutores planetários</td>
<td>TGM</td>
<td>Sertãozinho</td>
<td>SP</td>
<td>www.grupotgm.com.br</td>
<td>Potencial fornecedor (para sistema de pitch elétrico).</td>
</tr>
<tr>
<td>Motorredutores</td>
<td>WEG</td>
<td>Jaraguá do Sul</td>
<td>SC</td>
<td>www.weg.net</td>
<td></td>
</tr>
<tr>
<td></td>
<td>SEW</td>
<td>Indaiatuba</td>
<td>SP</td>
<td>br.sew-eurodrive.com</td>
<td></td>
</tr>
<tr>
<td>Painel de controle do passo</td>
<td>ICSA</td>
<td>Belo Horizonte</td>
<td>MG</td>
<td>www.icsaautomation.com</td>
<td>Subsidiária da IMPSA dedicada a sistemas de controle.</td>
</tr>
<tr>
<td></td>
<td>Ingeteam</td>
<td>Valinhos</td>
<td>SP</td>
<td>www.ingeteam.com</td>
<td></td>
</tr>
</tbody>
</table>

Quadro 19 — Fabricantes nacionais de subcomponentes do rotor — Sistema de passo

O sistema de passo pode ser basicamente de dois tipos: hidráulico e elétrico. A HINE do Brasil, pertencente ao Grupo Hine espanhol, já fabrica no Brasil subcomponentes para montagem...
de sistemas de passo hidráulicos, sendo que os cilindros do passo estão em processo de nacionalização. A BONFIGLIOLI, empresa de origem italiana, está em processo de nacionalização dos sistemas de controle elétricos – motorredutores. Já fabricam localmente motorredutores as empresas WEG e SEW. A TGM tem capacidade de usinagem para fabricação das engrenagens do sistema de passo e também para produção dos redutores planetários. A empresa é nova entrante no mercado eólico e já está em contato com algumas montadoras.

A ICSA, subsidiária da IMPSA, e a Ingeteam, empresa de origem espanhola, fabricam no País os painéis de controle do passo. Outras montadoras ainda importam este subcomponente de fabricantes alemãs, tais como: KEB (www.keb.de); SSB (www.emersonindustrial.com) e MOOG (www.moog.com.br).

3.2.5 FABRICANTES DE SUBCOMPONENTES DA NACELE

A montagem da nacele no Brasil também é uma exigência do BNDES para o financiamento dos aerogeradores. Inicialmente as montadoras precisam apresentar um plano de negócios detalhado da unidade industrial e na sequência as obras e instalações devem estar em andamento, as contratações de pessoal devem ser efetivadas, bem como os programas de treinamento dos funcionários da produção. Os próximos marcos exigem, além da efetiva operação de montagem, a nacionalização dos elementos estruturais (fundidos e/ou caldeirados) e de um número mínimo de subcomponentes da nacele a partir de uma tabela indicada pelo BNDES. Este número é ampliado no último marco da metodologia.

A possibilidade de optar por diferentes itens para nacionalização confere certa flexibilidade às montadoras, que podem então definí-las com base em suas estratégias e tecnologias de projeto.

Como consequência desse processo, empresas estrangeiras (geralmente fornecedores globais das montadoras) estão sendo atraídas para o País e fornecedores locais estão sendo desenvolvidos.

O Quadro 20 apresenta listagem dos principais subcomponentes da nacele e os respectivos fabricantes nacionais (atuais e potenciais), subdividida em elementos estruturais, carenagem da nacele, acessórios, eixo principal, sistema de Yaw e outros.
<table>
<thead>
<tr>
<th>Elementos estruturais</th>
<th>Fabricante</th>
<th>Localização</th>
<th>UF</th>
<th>Observação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Quadro principal</td>
<td>BR Metals</td>
<td>Matozinho</td>
<td>MG</td>
<td>Capacidade de fundição -450 Bedplates/ano</td>
</tr>
<tr>
<td></td>
<td>Romi</td>
<td>Sta. Bárbara do Oeste</td>
<td>SP</td>
<td>www.romi.com.br</td>
</tr>
<tr>
<td></td>
<td>Voith</td>
<td>São Paulo</td>
<td>SP</td>
<td>www.voith.com</td>
</tr>
<tr>
<td></td>
<td>Bardella</td>
<td>Guarulhos</td>
<td>SP</td>
<td>www.bardella.com.br</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sorocaba</td>
<td>SP</td>
<td></td>
</tr>
<tr>
<td>Parafusos estruturais</td>
<td>Friedberg</td>
<td>Alemanha, Coreia, Brasil - Monte Mor</td>
<td>SP</td>
<td>www.august-friedberg.com</td>
</tr>
<tr>
<td></td>
<td>Ciser</td>
<td>Joinville</td>
<td>SC</td>
<td>www.ciser.com.br</td>
</tr>
<tr>
<td></td>
<td>Industrial Rex</td>
<td>Braço do Trombudo</td>
<td>SC</td>
<td>www.rex.com.br/</td>
</tr>
<tr>
<td>Carenagem da nacele</td>
<td>E. M. Estaleiro (Phoenix)</td>
<td>Maceió</td>
<td>AL</td>
<td>phoenixboats.com.br</td>
</tr>
<tr>
<td></td>
<td>Ancel</td>
<td>Rio Claro</td>
<td>SP</td>
<td>www.ancel.com.br</td>
</tr>
<tr>
<td></td>
<td>Atlanta</td>
<td>Sorocaba</td>
<td>SP</td>
<td>www.atlantalaser.com.br</td>
</tr>
<tr>
<td></td>
<td>Molde</td>
<td>São José dos Campos</td>
<td>SP</td>
<td>www.mmolde.com.br</td>
</tr>
<tr>
<td></td>
<td>MVC</td>
<td>Curitiba</td>
<td>PR</td>
<td>www.mvcplasticos.com.br</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Camaçari</td>
<td>BA</td>
<td></td>
</tr>
<tr>
<td>Acessórios</td>
<td>Luzes de sinalização</td>
<td>São Paulo</td>
<td>SP</td>
<td>www.frata.com.br</td>
</tr>
<tr>
<td></td>
<td>Debetec</td>
<td>São Paulo</td>
<td>SP</td>
<td>www.debetec.com.br</td>
</tr>
<tr>
<td></td>
<td>Anemômetro</td>
<td>Não identificado fornecedor nacional</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sensor de direção do vento</td>
<td>Não identificado fornecedor nacional</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Para-raios</td>
<td>Não identificado fornecedor nacional</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Eixo Principal</td>
<td>Fabricante</td>
<td>Localização</td>
<td>UF</td>
<td>Observação</td>
</tr>
<tr>
<td>----------------------</td>
<td>------------</td>
<td>-------------------</td>
<td>----</td>
<td>--</td>
</tr>
<tr>
<td>Eixo principal</td>
<td>ROMI</td>
<td>Sta. Bárbara do Oeste</td>
<td>SP</td>
<td>www.romi.com.br</td>
</tr>
<tr>
<td></td>
<td>BR Metals</td>
<td>Matozinhos</td>
<td>MG</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Voith</td>
<td>São Paulo</td>
<td>SP</td>
<td>www.voith.com</td>
</tr>
<tr>
<td>Sistemas de lubrificação</td>
<td>Eximport</td>
<td>São Paulo</td>
<td>SP</td>
<td>www.eximport.com.br</td>
</tr>
<tr>
<td></td>
<td>SKF</td>
<td>Cajamar</td>
<td>SP</td>
<td>www.skf.com</td>
</tr>
<tr>
<td></td>
<td>Mobil</td>
<td>Rio de Janeiro</td>
<td>RJ</td>
<td>www.mobilindustrial.com</td>
</tr>
<tr>
<td></td>
<td>Klüber</td>
<td>Barueri</td>
<td>SP</td>
<td>www.kluuber.com</td>
</tr>
<tr>
<td></td>
<td>Fuchs do Brasil</td>
<td>Barueri</td>
<td>SP</td>
<td>www.fuchsbr.com</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sistema de YAW</th>
<th>Fabricante</th>
<th>Localização</th>
<th>UF</th>
<th>Observação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bontiglioi</td>
<td>CD em São Bernardo</td>
<td>SP</td>
<td>www.bontiglioi.com</td>
<td></td>
</tr>
<tr>
<td>TGM</td>
<td>Sertãozinho</td>
<td>SP</td>
<td>www.grupotgm.com.br</td>
<td></td>
</tr>
<tr>
<td>WEG</td>
<td>Jaraguá do Sul</td>
<td>SC</td>
<td>www.weg.net</td>
<td></td>
</tr>
<tr>
<td>SEW</td>
<td>Indaiatuba</td>
<td>SP</td>
<td>br.sew-eurodrive.com</td>
<td></td>
</tr>
<tr>
<td>ICSA</td>
<td>Belo Horizonte</td>
<td>MG</td>
<td>www.icsaautomation.com</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Outros</th>
<th>Fabricante</th>
<th>Localização</th>
<th>UF</th>
<th>Observação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rolamento Yaw</td>
<td>Robrasa</td>
<td>Diadema</td>
<td>SP</td>
<td>www.robrasa.com.br</td>
</tr>
<tr>
<td>Talha</td>
<td>Bauma</td>
<td>Votorantin</td>
<td>SP</td>
<td>www.bauma.ind.br</td>
</tr>
<tr>
<td>Conversor/Inversor</td>
<td>Ingeteam</td>
<td>Valinhos</td>
<td>SP</td>
<td>www.ingeteam.com</td>
</tr>
<tr>
<td></td>
<td>Woodward</td>
<td>Campinas</td>
<td>SP</td>
<td>www.woodward.com</td>
</tr>
<tr>
<td></td>
<td>ICSA</td>
<td>Belo Horizonte</td>
<td>MG</td>
<td>www.icsaautomation.com</td>
</tr>
<tr>
<td>Semicondutor de potência</td>
<td>Semikron</td>
<td>São Paulo</td>
<td>SP</td>
<td>www.semikron.com</td>
</tr>
<tr>
<td>Transformador (principal e auxiliar)</td>
<td>Comtrafo</td>
<td>Comité Procópio</td>
<td>PR</td>
<td>www.comtrafo.com.br</td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>----------</td>
<td>----------------</td>
<td>----</td>
<td>-------------------</td>
</tr>
<tr>
<td>ABB</td>
<td>Blumenau</td>
<td>SC</td>
<td>www.abb.com.br</td>
<td></td>
</tr>
<tr>
<td>Blutrafos</td>
<td>Blumenau</td>
<td>SC</td>
<td>www.blutrafos.com.br</td>
<td></td>
</tr>
<tr>
<td>WEG</td>
<td>Jaraguá do Sul</td>
<td>SC</td>
<td>www.weg.net</td>
<td></td>
</tr>
<tr>
<td>Siemens</td>
<td>Jundiaí</td>
<td>SP</td>
<td>www.energy.siemens.com/</td>
<td></td>
</tr>
<tr>
<td>Sistema de freios</td>
<td>Vulkan</td>
<td>Itatiba</td>
<td>SP</td>
<td>www.vulkan.com</td>
</tr>
<tr>
<td>TecTor</td>
<td>Santo André</td>
<td>SP</td>
<td>www.tector.com.br</td>
<td>Produz sistemas de freios para rotor e nacelle.</td>
</tr>
<tr>
<td>Sistema de travamento do rotor</td>
<td>Atlanta</td>
<td>Sorocaba</td>
<td>SP</td>
<td>www.atlantalaser.com.br</td>
</tr>
<tr>
<td>Painel de proteção elétrica</td>
<td>ICSA</td>
<td>www.icsaautomation.com</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ABB</td>
<td>www.abb.com.br</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Blutrafos</td>
<td>Ver acima</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phelps Dodge</td>
<td>Poços de Caldas</td>
<td>SP</td>
<td>www.pdicbrasil.com</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Serra</td>
<td>SP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>São Paulo</td>
<td>SP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prysmian</td>
<td>Santo André</td>
<td>SP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sorocaba</td>
<td>SP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vila Velha</td>
<td>ES</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Caiaína</td>
<td>ES</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Joinville</td>
<td>SC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Unidade hidráulica</td>
<td>Rexroth Bosch Group</td>
<td>Atibaia</td>
<td>SP</td>
<td>www.boschrexroth.com.br</td>
</tr>
<tr>
<td></td>
<td>Pomerode</td>
<td>SC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hensaflex</td>
<td>Curitiba</td>
<td>PR</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Blumenau</td>
<td>SC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>São Paulo</td>
<td>SP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hine</td>
<td>Ver acima</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sistema de refrigeração da nacelle</td>
<td>Apema</td>
<td>São Bernardo dos Campos</td>
<td>SP</td>
<td>www.apema.com.br</td>
</tr>
<tr>
<td></td>
<td>Gea</td>
<td>Franco da Rocha</td>
<td>SP</td>
<td>www.geadbrazil.com.br</td>
</tr>
</tbody>
</table>
A estrutura da nacele é fundida e/ou caldeirada, dependendo do projeto da montadora, sua configuração e/ou opção tecnológica. Algumas montadoras importavam este item e agora estão em processo de desenvolvimento de fabricantes locais, pois a partir de 2015 esses subcomponentes serão obrigatórios (exceto se a montadora optar por alguma nacionalização alternativa permitida pelo BNDES – ver metodologia). Montadoras cujos aerogeradores têm uma configuração de estrutura da nacele mais complexa percebem dificuldades no desenvolvimento de seus itens, especialmente considerando que os fabricantes destas estruturas estarão desenvolvendo simultaneamente para outras montadoras.

A carenagem na nacele tem como fornecedores atuais e potenciais basicamente os mesmos fabricantes da carenagem do cubo.

Os acessórios, luzes de sinalização, anemômetros, sensores de direção de vento e outros sensores são em geral importados. Alguns desses itens compõem a coluna C da tabela do BNDES – pelo menos seis itens desta coluna devem ser de fabricação local até janeiro de 2016. Embora alguns desses itens envolvam uma tecnologia mais sofisticada, há empresas no Brasil desenvolvendo estes subcomponentes em parceria com universidades brasileiras.
O rolamento do eixo principal é um item da coluna B da Tabela do BNDES – pelo menos cinco itens desta coluna devem ser de fabricação local até janeiro de 2016. Atualmente as montadoras importam este subcomponente, que é considerado um item bastante crítico e de alta precisão, de empresas europeias. Fornecedores estrangeiros para este item são, por exemplo, ThyssenKrupp, FAG, SKF, NSK e Schaeffler.

Outro item da coluna B da Tabela do BNDES é o eixo principal. A maioria das montadoras atualmente importa este subcomponente (que é normalmente forjado), mas as empresas de usinagem de grande porte locais são alternativas para a localização de pelo menos parte do processo.

Os fornecedores de sistema de lubrificação para o eixo principal são basicamente os mesmos apresentados anteriormente para o rotor.

O rolamento do Yaw é mais um item da coluna B da Tabela do BNDES. A ROBRASA já está desenvolvendo este tipo de rolamento para fabricação no Brasil, mas, dependendo da exigência da montadora, os processos/equipamentos disponíveis podem ser insuficientes para o atendimento de alguns requisitos técnicos.

Os sistemas de Yaw, que também compõem a coluna B, são basicamente elétricos e têm como possíveis fornecedores os mesmos fabricantes citados para o sistema de passo. A engrenagem do Yaw, normalmente importada, poderia ser usinada localmente. A TGM tem maquinário para usinagem de engrenagens de grandes diâmetros, porém necessita importar o anel forjado base.

A talha é um item da coluna C e é geralmente importada de empresas como LIFTKET e CERTEX, embora já haja fornecedor em desenvolvimento no País. Importante observar que há montadoras que não utilizam talha em seu aerogerador.

O inversor, ou conversor, dependendo da montadora/tecnologia é um item da coluna A da tabela do BNDES – pelo menos um item desta coluna (que tem três itens para aerogeradores com caixa e quatro para sem caixa) – deve ser nacional. Este subcomponente foi definido por algumas montadoras como item para nacionalização e já há processos em andamento com previsão para início de operação em 2014.

Em termos de transformadores, o País já conta com diversas fábricas locais, não havendo dificuldades para as montadoras com relação a este item. Da mesma forma com relação aos painéis de proteção elétricos. Há montadoras que estão optando por fabricar este item internamente.

No Brasil já há fabricantes de sistemas de freios para aerogeradores. Este é um item da coluna C da tabela do BNDES. As montadoras, portanto, têm a possibilidade de importar este item de empresas estrangeiras como a EMB, Stromag e Svendborg. Caso similar é do sistema de travamento do rotor. Parece haver apenas um fabricante nacional e algumas montadoras estão optando por importar este item de empresas como Kaibo, Zhenjiang e Shuanglin.
Os cabos e barramentos de média tensão também são itens da coluna C da tabela do BNDES e há fornecedores com várias fábricas no País. Outro item da coluna C é a unidade hidráulica, que também já tem fornecedores locais. Já há fornecedores locais também para os sistemas de refrigeração (coluna B). O slip ring (escova ou anel coletor), presente em algumas configurações de aerogerador é atualmente importado (por exemplo, da Mersen).

As montadoras que utilizam caixa de engrenagem em seus aerogeradores devem ter nacionalizado até janeiro de 2016 pelo menos um dos seguintes subcomponentes: gerador, caixa multiplicadora e inversor. O gerador atualmente é importado, mas há fornecedores locais de geradores para outros segmentos como WEG e ABB possíveis de serem desenvolvidos. A caixa de engrenagem é vista como um item de maior dificuldade para localização, uma vez que o produto é muito específico para a indústria eólica e há poucos fabricantes mundiais. A TMG, empresa que fornece redutores planetários para moenda (setor sucroalcooleiro), tem interesse em desenvolver parceria tecnológica para fornecimento local deste item.

As montadoras que não utilizam caixa de engrenagem devem fabricar o gerador no Brasil, em unidade própria e com núcleo magnético de chapas de aço silício e bobinas de cobre de procedência nacional desde o marco inicial do BNDES. A partir de janeiro de 2016, no mínimo um dos seguintes subcomponentes deve estar nacionalizado: estrutura da nacele, elementos estruturais do rotor, elementos estruturais do estator e inversor. A BARDELLA já fornece elementos estruturais do rotor e estator e, juntamente com outras empresas como ROMI, Voith e BR Metals, teria condições de atender montadoras que tenham interesse em nacionalizar estes itens. Já há fabricantes locais para a resina de impregnação, assim como para bobinas e núcleo magnético. Este último utiliza em sua fabricação o aço silício, sendo que a Aperan é hoje a única opção nacional para este material. Não há atualmente fabricantes nacionais de imãs permanentes. Cabe ressaltar que estes últimos itens não têm exigência do BNDES para sua nacionalização. No caso dos imãs permanentes já há projetos em andamento para instalação de laboratório e fábrica no País.

3.3 FORNECEDORES NACIONAIS DE SERVIÇOS

Conforme apresentado no Capítulo 2, diversos são os serviços que fazem parte da cadeia produtiva da indústria eólica, os quais podem ser classificados principalmente conforme a fase do desenvolvimento de projetos eólicos a que se relacionam: serviços de desenvolvimento de projetos de parques, serviços de apoio à negociação com fornecedores e compradores/leilão, serviços de apoio a pré-construção, serviços para implantação dos parques – logística e execução de obras, serviços de operação e manutenção; além de serviços associados à certificação de aerogeradores e treinamento técnico.

É comum que fornecedores de serviços atuem em mais de uma fase dos projetos eólicos e, algumas vezes, atendam também projetos de outras fontes de energia. Há fornecedores...
locais praticamente para todos os tipos de serviço, sendo que várias empresas estrangeiras têm montado escritórios no Brasil com técnicos especializados para atendimento ao mercado brasileiro.

A seguir são apresentados os principais fornecedores nacionais e os serviços oferecidos, identificados através das coletas de campo (entrevistas e participação em eventos do setor) e de dados secundários (sites das empresas e folders).

3.3.1 SERVIÇOS DE DESENVOLVIMENTO DE PROJETOS

Os serviços de desenvolvimento de projeto englobam a prospecção de áreas, estudos de viabilidade e o desenvolvimento do projeto em si. O Quadro 21 apresenta os fornecedores nacionais com atuação nesta fase.

<table>
<thead>
<tr>
<th>Fornecedor</th>
<th>Serviços oferecidos</th>
<th>Site</th>
<th>Observação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alubar Energia</td>
<td>Desenvolvimento de projetos de linhas de transmissão e subestações para parques eólicos</td>
<td>www.alubar.net</td>
<td>Também fornece cabos e metais.</td>
</tr>
<tr>
<td>AWS Truepower</td>
<td>Avaliação de recursos Elaboração de projeto básico/leiáute Avaliação das condições do site e rendimento energético Avaliação ambiental Avaliação tecnológica dos aerogeradores Avaliação de infraestrutura elétrica</td>
<td>www.awstrupower.com</td>
<td></td>
</tr>
<tr>
<td>Bioconsultoria</td>
<td>Consultoria para gestão e licenciamento ambiental</td>
<td>www.bioconsultoria.com</td>
<td></td>
</tr>
<tr>
<td>Bioimagens</td>
<td>Consultoria para gestão e licenciamento ambiental</td>
<td>www.bioimagens.com.br</td>
<td></td>
</tr>
<tr>
<td>Fornecedor</td>
<td>Serviços oferecidos</td>
<td>Site</td>
<td>Observação</td>
</tr>
<tr>
<td>------------------------</td>
<td>---</td>
<td>--</td>
<td>---</td>
</tr>
<tr>
<td>Brasilco Serviços</td>
<td>Identificação e seleção de áreas potenciais</td>
<td>www.braselco.com.br</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Estudos de viabilidade técnica e econômica</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elaboração de projeto básico/layout</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Campanha de medição do potencial eólico</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Certificação da campanha de medição</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elaboração de projetos e estudos elétricos</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suporte para obtenção da autorização ANEEL e licenças ambientais</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suporte para elaboração de projetos executivos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Camargo Schubert</td>
<td>Campanhas de medição</td>
<td>www.camargoschubert.com.br</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Desenvolvimento de projetos de parques</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Estudos e relatórios ambientais</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Estimativas de produção</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Análise de viabilidade</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concremat</td>
<td>Análises ambientais</td>
<td>www.concremat.com.br</td>
<td></td>
</tr>
<tr>
<td>Crosswind</td>
<td>Consultoria em desenvolvimento de projetos de grande, médio e pequeno porte</td>
<td>www.crosswind.com.br</td>
<td></td>
</tr>
<tr>
<td>DGE</td>
<td>Desenvolvimento de projetos de parques eólicos</td>
<td>www.dge.com.br</td>
<td></td>
</tr>
<tr>
<td>Dewi</td>
<td>Potencial do vento</td>
<td>www.dewi.de</td>
<td>Empresa global de origem alemã.</td>
</tr>
<tr>
<td></td>
<td>Prognóstico da produção de energia</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Design do parque eólico</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Curva de potência presumida</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Avaliação de incertezas</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Probabilidade de excesso</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Cálculo da rede</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Condições para conexão à rede</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Treinamentos</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Revisão de restrições</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Projeto conceitual do parque eólico</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mapeamento / medição do vento</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Análise financeira</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Revisão da conexão à rede</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elaboração de estudos ambientais</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monitoramento do vento</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elaboração de projeto básico/leiaute</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Avaliação das condições do site e rendimento energético</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suporte para conexão à rede</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Suporte para seleção do aerogerador</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dossel Ambiental</td>
<td>Suporte para licenciamento ambient</td>
<td>www.dosselambiental.com.br</td>
<td></td>
</tr>
<tr>
<td>Epcor Energia</td>
<td>Desenvolvimento de projetos eólicos</td>
<td>www.epcor.com.br</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gerenciamento de projetos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fornecedor</td>
<td>Serviços oferecidos</td>
<td>Site</td>
<td>Observação</td>
</tr>
<tr>
<td>---------------------------</td>
<td>---</td>
<td>-------------------------------</td>
<td>-----------------------------------</td>
</tr>
</tbody>
</table>
| EPI Energia | Estudo de viabilidade técnica e econômica
Planejamento, operação e manutenção de campanhas anemométricas
Estudos específicos de produção energética e para processo de licenciamento ambiental
| Eólica Tecnologia | Desenvolvimento de projetos
Avaliação de áreas
Análise de impacto ambiental
Estimativa de produção de energia | www.eolia.com.br | |
| Ereda | Avaliação de recursos
Elaboração de projetos e especificações técnicas
| FG Soluções em Energias | Prospeção de áreas
Campanha de medição
Estudos de topografia, geotecnia e de resgate arqueológico
Estudos elétricos e de conexão à rede
Elaboração do projeto básico
Assessoria na escolha dos aerogeradores
Estudos de micrositing
Suporte em licenciamentos ambientais
Avaliação econômica financeira do parque eólico | www.fgenergias.com | |
| Globalgeo Geotecologias | Mapeamento de áreas para implantação de parques eólicos
Geração de MDS (Modelo Digital de Superfície) e extração de curvas de nível, utilizados na geração do modelo de rugosidade de terreno e altimetria para estudos de prospecção em parques eólicos
Desenvolvimento de SIG/SIG WEB para gestão ambiental e gerenciamento de construções de parques eólicos | www.globalgeo.com.br | |
| Hatec Neves | Montagem e manutenção de torres anemométricas | www.hatecneves.com.br | Também fabricam as torres anemométricas. |
| Idnamic | Fornecimento, manutenção e operação de estações anemométricas
Certificações da curva de potência
Avaliação Energética
Análise topográfica do terreno
Estudos de resistividade do solo e projeto de sistemas de aterramento
Estudos de impacto ambiental
Elaboração de projeto básico e executivo
Preparação de empreendimento para leilão | www.idnamic.com | |
<table>
<thead>
<tr>
<th>Fornecedor</th>
<th>Serviços oferecidos</th>
<th>Site</th>
<th>Observação</th>
</tr>
</thead>
<tbody>
<tr>
<td>IEM</td>
<td>Instalação de equipamentos para medição de ventos, assessoria geral e serviços de supervisão e monitoramento da medição</td>
<td>www.iem.com.br</td>
<td></td>
</tr>
<tr>
<td>Inova Energy</td>
<td>Torres anemométricas, Campanha de medição, Estudos de micrositing, Projetos de engenharia</td>
<td>www.inovaenergy.com.br</td>
<td></td>
</tr>
<tr>
<td>IS Indústria Metalúrgica</td>
<td>Projeto, instalação e locação de Torres anemométricas</td>
<td>www.isindustria.com.br</td>
<td></td>
</tr>
<tr>
<td>K2 Management Group</td>
<td>Desenvolvimento de projetos, Planejamento e gerenciamento de projetos, Engenharia de micrositing, Projetos de engenharia civil</td>
<td>www.k2management.eu</td>
<td>Empresa de origem dinamarquesa.</td>
</tr>
<tr>
<td>Megajoule</td>
<td>Serviços de medição de vento, Avaliação de recurso e estimativas de produção</td>
<td>www.megajoule.pt</td>
<td></td>
</tr>
<tr>
<td>MEK Engenharia</td>
<td>Prospecção de sites, Suporte para estudo ambiental, licenciamento e registro do projeto, Estudos de Conexão à Rede, Implantação de Sistema de Medicação e Acompanhamento na coleta e armazenamento de dados, Suporte na contratação de serviços topográficos e sondagens, Estudos de layouts, Estimativas de produção de energia, Estudos de viabilidade técnica, econômica e ambiental, Análise de riscos, Projeto básico (civil e elétrico)</td>
<td>www.mek.com.br</td>
<td></td>
</tr>
<tr>
<td>Multi Empreendimentos</td>
<td>Engenharia consultiva, Elaboração de projetos básicos, Estudos elétricos, de risco e ambientais</td>
<td>www.multiempreendimentos.com</td>
<td></td>
</tr>
<tr>
<td>Nótus Soluções Renováveis</td>
<td>Desenvolvimento de projetos eólicos, Estudos e certificação de produção de energia, Serviços relacionados ao licenciamento ambiental dos parques e relacionados à sua construção e operação</td>
<td>notusrenovaveis.com.br</td>
<td></td>
</tr>
<tr>
<td>Santa Rita</td>
<td>Contratos para arrendamento de terrenos e permissões, Campanhas de medição de ventos, Estudos ambientais</td>
<td>www.santarita.com.br</td>
<td></td>
</tr>
<tr>
<td>SGS do Brasil</td>
<td>Suporte para estudos de viabilidade de projeto, Certificação de projeto</td>
<td>www.sgsgroup.com.br</td>
<td></td>
</tr>
</tbody>
</table>
Quadro 21 – Fornecedores de serviço associados ao desenvolvimento de projetos

3.3.2 SERVIÇOS DE APOIO À NEGOCIAÇÃO

Os serviços de apoio à negociação envolvem suporte nas negociações com fornecedores e compradores e no relacionamento com investidores. O Quadro 22 apresenta os fornecedores e respectivos serviços oferecidos.
<table>
<thead>
<tr>
<th>Fornecedor</th>
<th>Serviços oferecidos</th>
<th>Site</th>
<th>Observação</th>
</tr>
</thead>
<tbody>
<tr>
<td>AWS Truepower</td>
<td>Revisão de contratos de garantia, Avaliação de vencimentos de garantia, Estimativa de gastos e custos de O&M, Análise de restrições e receitas</td>
<td>www.awstrupower.com</td>
<td></td>
</tr>
<tr>
<td>Brasilco Serviços</td>
<td>Negociações com fabricantes de máquinas e órgãos financiadores, Due diligence, Assessoria e consultoria na negociação dos contratos de conexão à rede elétrica</td>
<td>www.brasilco.com.br</td>
<td></td>
</tr>
<tr>
<td>Camargo Schubert</td>
<td>Due diligence, Avaliações econômicas</td>
<td>www.camargoschubert.com.br</td>
<td></td>
</tr>
<tr>
<td>Dewi</td>
<td>Due diligence, Contratos de fornecedores e manutenção</td>
<td>www.dewi.de</td>
<td>Empresa global de origem alemã.</td>
</tr>
<tr>
<td>DNV – GL Group</td>
<td>Due diligence</td>
<td>www.gl-garradhassan.com</td>
<td></td>
</tr>
<tr>
<td>Elementos</td>
<td>Identificação de oportunidades de compra de ativos, Due diligence técnico, comercial e jurídico, Identificação de riscos, Negociação de contratos de compra e venda</td>
<td>www.elementos.com.br</td>
<td></td>
</tr>
<tr>
<td>Ereda</td>
<td>Due diligence, Avaliação de ativos</td>
<td>www.ereda.com.br</td>
<td>Empresa de origem espanhola.</td>
</tr>
<tr>
<td>FG Soluções em Energias</td>
<td>Assessoramento no contato e negociação com os fabricantes de turbinas eólicas</td>
<td>www.fgenergias.com</td>
<td></td>
</tr>
<tr>
<td>Inova Energy</td>
<td>Due Diligence</td>
<td>www.inovaenergy.com.br</td>
<td></td>
</tr>
<tr>
<td>K2 Management Group</td>
<td>Suporte para relação com fornecedores, Due diligence</td>
<td>www.k2management.eu</td>
<td>Empresa de origem dinamarquesa.</td>
</tr>
<tr>
<td>Megajoule</td>
<td>Due Diligence</td>
<td>www.megajoule.pt</td>
<td></td>
</tr>
<tr>
<td>MEK Engenharia</td>
<td>Suporte na elaboração dos pedidos de propostas de equipamentos e serviços, Due diligence</td>
<td>www.mek.com.br</td>
<td></td>
</tr>
<tr>
<td>Multi Empreendimentos</td>
<td>Assessoramento em certames de compra e venda de energia</td>
<td>www.multiempreendimentos.com</td>
<td></td>
</tr>
<tr>
<td>SGS do Brasil</td>
<td>Due diligence, Apoio a licitações</td>
<td>www.sgsgroup.com.br</td>
<td></td>
</tr>
<tr>
<td>Vilco</td>
<td>Due Diligence</td>
<td>www.vilco.net.br</td>
<td></td>
</tr>
</tbody>
</table>

Quadro 22 – Fornecedores de serviço de apoio a negociações
3.3.3 SERVIÇOS DE EXECUÇÃO

Os serviços de execução compreendem as fases de pré-construção e construção do parque e montagem das máquinas e instalações. No Quadro 23 são apresentados os fornecedores nacionais com atuação nesta fase.

<table>
<thead>
<tr>
<th>Fornecedor</th>
<th>Serviços oferecidos</th>
<th>Site</th>
<th>Observação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aggreko</td>
<td>Aluguel de bancos de carga e grupos geradores para comissionamento de parques</td>
<td>www.aggreko.com.br</td>
<td></td>
</tr>
<tr>
<td>Arteche Turnkey Solutions</td>
<td>EPC elétrico e civil de parques eólicos</td>
<td>www.arteche.com</td>
<td>A Arteche INAEL fornece equipamentos elétricos como cubículos de média tensão e centros de transformação.</td>
</tr>
<tr>
<td>AWS Truepower</td>
<td>Pesquisa e planejamento – modelagem energética avançada</td>
<td>www.awstrupower.com</td>
<td></td>
</tr>
<tr>
<td>Barlovento</td>
<td>Due diligence técnica Controle e inspeção da obra Ensaios de aceitação Vigilância ambiental da obra</td>
<td>www.barlovento-recursos.com</td>
<td>Empresa de origem espanhola.</td>
</tr>
<tr>
<td>Brasilco Serviços</td>
<td>Acompanhamento e fiscalização das obras Comissionamento das instalações da central eólica</td>
<td>www.braselco.com.br</td>
<td></td>
</tr>
<tr>
<td>Cortez Engenharia</td>
<td>Obras civis</td>
<td>www.cortezengenharia.com.br</td>
<td></td>
</tr>
<tr>
<td>Crosswind</td>
<td>Consultoria em implantação e operação de projetos de grande, médio e pequeno porte Consultoria em auditorias, fiscalização e monitoramento de projetos</td>
<td>www.crosswind.com.br</td>
<td></td>
</tr>
<tr>
<td>Fornecedor</td>
<td>Serviços oferecidos</td>
<td>Site</td>
<td>Observação</td>
</tr>
<tr>
<td>--------------------------------</td>
<td>---</td>
<td>-------------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>DNV – GL Group</td>
<td>Realização de leilões de contratação e aquisição</td>
<td>www.gl-garradhassan.com</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elaboração / revisão do projeto elétrico e civil</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gestão da conexão com a rede</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Avaliação do rendimento energético formal</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Due diligence técnica</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gestão do projeto</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monitoramento da construção</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engenharia do proprietário</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dois A Engenharia</td>
<td>Construção civil – infraestrutura para implantação de parques</td>
<td>www.doisa.com</td>
<td></td>
</tr>
<tr>
<td>EC13 Energia</td>
<td>Serviços de engenharia e consultoria técnica para a implantação de projetos eólicos</td>
<td>www.ec13.com.br</td>
<td></td>
</tr>
<tr>
<td>Engineering</td>
<td>Gerenciamento de obras</td>
<td>www.engineering.com.br</td>
<td></td>
</tr>
<tr>
<td>Enserv Engenharia</td>
<td>Consultoria, elaboração de projetos e execução/instalação de subestações, linhas de</td>
<td>www.enservengenharia.com.br</td>
<td></td>
</tr>
<tr>
<td></td>
<td>transmissão e distribuição</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ereda</td>
<td>Análise e supervisão de construção</td>
<td>www.ereda.com.br</td>
<td>Empresa de origem espanhola.</td>
</tr>
<tr>
<td>Este</td>
<td>Construção de fundações das torres eólicas</td>
<td>www.este.com.br</td>
<td></td>
</tr>
<tr>
<td>Eurogrus Arteche</td>
<td>Elevação, montagem eletromecânica e comissionamento de aerogeradores</td>
<td>www.eurogrusarteche.com.br</td>
<td></td>
</tr>
<tr>
<td>Grupo TBR</td>
<td>Montagem eletromecânica de aerogeradores</td>
<td>www.barvan.com.br</td>
<td></td>
</tr>
<tr>
<td>Iberobras</td>
<td>BoP do parque, incluindo rede de acessos, fundações dos aerogeradores, plataformas</td>
<td>www.iberobras.com.br</td>
<td></td>
</tr>
<tr>
<td></td>
<td>de provisões e montagem, valetas de média tensão, instalação da rede de aterrimento,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>instalação de tubos triplos, terna de cabos e fibra óptica, e a execução integral</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>dos edifícios de controle e as subestações.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDNOMIC</td>
<td>Estudo de alternativas do tipo de aerogenerador mais adequado</td>
<td>www.idnamic.com</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Otimização da obra civil e elétrica antes do começo da construção do parque eólico</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gerenciamento de projeto</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engenharia de proprietário</td>
<td></td>
<td></td>
</tr>
<tr>
<td>IV Guindastes</td>
<td>Serviços de içamento e movimentação de cargas</td>
<td>www.ivguindastes.com.br</td>
<td></td>
</tr>
<tr>
<td>K2 Management Group</td>
<td>Implantação de projetos</td>
<td>www.k2management.eu</td>
<td>Empresa de origem dinamarquesa</td>
</tr>
<tr>
<td></td>
<td>Gerenciamento de risco e interfaces</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fornecedor</td>
<td>Serviços oferecidos</td>
<td>Site</td>
<td>Observação</td>
</tr>
<tr>
<td>-----------------------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
</tr>
<tr>
<td>Makro Wind</td>
<td>Instalação de aerogeradores (içamento, montagem e comissionamento)</td>
<td>www.makrowind.com.br</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Transporte de componentes (carga e descarga do porto, movimentações internas)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gestão e execução de projetos (operações turnkey)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>MEK Engenharia</td>
<td>Gerenciamento de projeto</td>
<td>www.mek.com.br</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engenharia do proprietário</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mercurius Engenharia</td>
<td>Construção de parques</td>
<td>www.mercurius.com.br</td>
<td></td>
</tr>
<tr>
<td>Multi Empreendimentos</td>
<td>Planejamento para construção dos empreendimentos</td>
<td>www.multiempreendimentos.com</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Monitoramento dos serviços de construção e montagem</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engenharia do proprietário</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Santa Cruz Engenharia</td>
<td>Execução de bases em concreto armado para aerogeradores</td>
<td>www.santacruzengenharia.com.br</td>
<td></td>
</tr>
<tr>
<td>Santa Rita</td>
<td>Projeto e construção civil de parques – estradas e fundações</td>
<td>www.santarita.com.br</td>
<td></td>
</tr>
<tr>
<td>Saraiva</td>
<td>Serviços de transporte e movimentação</td>
<td>www.saraivaequipamentos.com.br</td>
<td></td>
</tr>
<tr>
<td>SGS do Brasil</td>
<td>Gerenciamento de projeto</td>
<td>www.sgsgroup.com.br</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Supervisão da construção</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Garantia da qualidade</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Auditoria técnica</td>
<td></td>
<td></td>
</tr>
<tr>
<td>SIMM</td>
<td>Engenharia do proprietário e supervisão</td>
<td>www.simmsa.com.br</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Construção de BOP eólico completo em modelo EPC</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Montagem e transporte de aerogeradores</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Sowitec Operation</td>
<td>Gerenciamento da construção de projetos eólicos</td>
<td>www.sowtec.com</td>
<td>Empresa de origem alemã</td>
</tr>
<tr>
<td>STK Sistemas</td>
<td>EPC elétrico (construção de redes, subestações e linhas de transmissão)</td>
<td>www.stksistemas.com</td>
<td></td>
</tr>
<tr>
<td></td>
<td>EPC civil (arruamentos, plataformas e fundações)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tecnogera</td>
<td>Comissionamento de parques utilizando bancos de carga e grupos geradores</td>
<td>www.tecnogergeradores.com.br</td>
<td></td>
</tr>
<tr>
<td>Transdata</td>
<td>Movimentação de cargas complexas</td>
<td>www.transdata.com.br</td>
<td></td>
</tr>
<tr>
<td>Transversátil</td>
<td>Transporte de cargas do segmento eólico</td>
<td>www.transversatil.com</td>
<td>Atuação no Mercosul juntamente com a Transportes Cuello</td>
</tr>
<tr>
<td></td>
<td>Projeto logístico / prevenção de obstáculos</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Quadro 23 – Fornecedores de serviços de pré-construção e construção

<table>
<thead>
<tr>
<th>Fornecedor</th>
<th>Serviços oferecidos</th>
<th>Site</th>
<th>Observação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vilco</td>
<td>Gestão da implantação</td>
<td>www.vilco.net.br</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Engenharia do proprietário</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gestão de aquisição e fornecimento de equipamentos e materiais</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inspeção e fiscalização de equipamentos</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ensaios e comissionamento de equipamentos eletromecânicos</td>
<td></td>
<td></td>
</tr>
<tr>
<td>WM Construções & Montagens</td>
<td>Elaboração de estudos elétricos</td>
<td>www.wmconstrucoesemontagens.com.br</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Acompanhamento e fiscalização de obras</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Construção de subestações.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Construção de redes de media tensão</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Construção de linhas de transmissão</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Montagem eletromecânica de aerogeradores</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3Z</td>
<td>Movimentação de cargas (guindastes para movimentação e montagem dos componentes do aerogerador)</td>
<td>www.3z.com.br</td>
<td>Empresa do grupo Zandoná.</td>
</tr>
<tr>
<td>Ziatech</td>
<td>Engenharia do proprietário</td>
<td>www.ziatech.com.br</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gerenciamento de projetos</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

3.3.4 SERVIÇOS DE OPERAÇÃO E MANUTENÇÃO

No Brasil, as atividades de operação e manutenção (O&M) são contratadas atualmente de fabricantes de aerogerador (ver Tabelas 1 e 2), que por sua vez terceirizam diversos serviços associados. O Quadro 24 a seguir apresenta os diversos serviços de O&M realizados por outras empresas que não as montadoras.
<table>
<thead>
<tr>
<th>Fornecedor</th>
<th>Serviços oferecidos</th>
<th>Site</th>
<th>Observação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Critical Software</td>
<td>Supervisão remota, controle e aquisição de dados de múltiplas usinas. Gerenciamento integrado e centralizado das atividades de O&M</td>
<td>www.criticalsoftware.com.br</td>
<td></td>
</tr>
<tr>
<td>Grupo TBR</td>
<td>Manutenção de aerogeradores.</td>
<td>www.barvan.com.br</td>
<td></td>
</tr>
<tr>
<td>FOCKINK</td>
<td>Projeto, montagem, execução civil/ eletromecânica e comissionamento da subestação elevatória BT/ MT, banco de capacitores e do cabeamento de distribuição MT.</td>
<td>www.fockink.ind.br</td>
<td></td>
</tr>
<tr>
<td>HB Soluções Eólicas</td>
<td>Preservação e manutenção de parques (limpeza, manutenção, tratamento de corrosão, inspeção de pinturas, torque e lubrificação)</td>
<td>grupobaram.com/hbsolucoes</td>
<td>Empresa do Grupo Baram.</td>
</tr>
<tr>
<td>Fornecedor</td>
<td>Serviços oferecidos</td>
<td>Site</td>
<td>Observação</td>
</tr>
<tr>
<td>----------------------</td>
<td>---</td>
<td>---</td>
<td>----------------------------------</td>
</tr>
</tbody>
</table>
| IDNAMIC | Gestão da operação e manutenção do parque
Revisão do contrato de operação e manutenção
Revisão do funcionamento dos aerogeradores
Revisão da infraestrutura elétrica
Revisão da obra civil | www.idnamic.com | |
| Inova Energy | Certificação da produção
O&M - Gerenciamento da operação | www.inovaenergy.com.br | |
| K2 Management Group | Operação e manutenção
Gerenciamento da qualidade, saúde, segurança e meio ambiente |
| | www.k2management.eu | | Empresa de origem dinamarquesa. |
| Kwara | Projetos Elétricos
Montagem Eletromecânica
Comissionamento em instalações
Manutenção preventiva e corretiva
Manutenção em instalações com Linha Viva até 36,2KV
Lavagem de isoladores com rede energizada até 230KV
SPDA (Sistema de Proteção contra Descargas Atmosféricas)
O & M de Subestações | www.kwara.com.br | |
| Makro Wind | Serviços de manutenção | www.makrowind.com.br | |
| Megajoule | Curvas de potência e análises de desempenho | www.megajoule.pt | |
| MEK Engenharia | Análise de desempenho e da produção
Análise da disponibilidade | www.mek.com.br | |
| Multi Empreendimentos| Gestão integrada de O&M | www.multiempreendimentos.com | Em parceria com a Alstom. |
| SGS do Brasil | Inspeções, testes e análise de falhas
Gerenciamento de riscos
Verificação de desempenho | www.sgsgroup.com.br | |
| SIMM | Manutenção elétrica e civil
Manutenção de aerogeradores
| Sowitec Operation | Gestão técnica e comercial de parques | www.sowitec.com | Empresa de origem alemã. |
| STK Sistemas | Manutenção elétrica e civil de parques | www.stksistemas.com | |
| Viabilize | Engenharia e gestão no trânsito de grandes cargas | www.viabilize.eng.br | |
| Way2 Technology | Serviços de gestão e operação da medição | www.way2.com.br | |
| WM Construções & Montagens | Operação e manutenção de parques | www.wmconstrucoesemontagens.com.br | |

Quadro 24 – Fornecedores nacionais de serviços associados a O&M dos parques eólicos
3.3.5 OUTROS SERVIÇOS

Além dos vários serviços apresentados anteriormente, há ainda outros que, por não se encaixarem exatamente nos tópicos anteriores, são apresentados separadamente, no Quadro 25.

<table>
<thead>
<tr>
<th>Fornecedor</th>
<th>Serviços oferecidos</th>
<th>Site</th>
<th>Observação</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aeroespacial</td>
<td>Elaboração de atlas/mapas eólicos</td>
<td>-</td>
<td>careern@aeroespacialdobrasil.com.br</td>
</tr>
<tr>
<td>BTG Pactual</td>
<td>Comercialização de contratos de energia - trading</td>
<td>www.btgpactual.com</td>
<td></td>
</tr>
<tr>
<td>Crosswind</td>
<td>Treinamentos sob demanda "in company" para capacitação de pessoal</td>
<td>www.crosswind.com.br</td>
<td></td>
</tr>
<tr>
<td>CTGAS</td>
<td>Capacitação profissional, Serviços técnicos laboratoriais, Suporte ao desenvolvimento de tecnologias, Inteligência estratégica de energia</td>
<td>www.ctgas.com.br</td>
<td>Centro de Tecnologias do Gás - parceria entre Petrobras e Senai.</td>
</tr>
<tr>
<td>Dewi</td>
<td>Pesquisas e estudos, Cursos de treinamento e seminários, Perícias, Consultoria política</td>
<td>www.dewi.de</td>
<td>Empresa global de origem alemã.</td>
</tr>
<tr>
<td>DNV – GL Group</td>
<td>Treinamentos em geral, Estudos de inteligência de mercado, Estudos sobre políticas e regulação, Estudos estratégicos especializados</td>
<td>www.gl-garradhassan.com</td>
<td></td>
</tr>
<tr>
<td>Linkx</td>
<td>Comercialização de energia</td>
<td>linkxenergia.com.br</td>
<td></td>
</tr>
<tr>
<td>RSA Seguros</td>
<td>Seguros, Gestão de riscos para projetos e operações, Gestão de sinistros</td>
<td>www.rsaseguros.com.br</td>
<td></td>
</tr>
<tr>
<td>Thymos Energia</td>
<td>Gerenciamento de contratos de energia, Estudos técnicos e regulatórios, Projeções de tarifas e do Mercado Livre, Análises econômico-financeiras, Projetos de P&D</td>
<td>thymosenergia.com.br</td>
<td></td>
</tr>
<tr>
<td>Wind Energy Brazil</td>
<td>Serviços jurídicos</td>
<td>www.windenergybrazil.com.br</td>
<td></td>
</tr>
<tr>
<td>Windcraft</td>
<td>Projetos de aerogeradores e componentes</td>
<td>www.windcraft.com.br</td>
<td></td>
</tr>
</tbody>
</table>

Quadro 25 – Outros serviços
3.4 DESCritivo da capacidade de produção

A capacidade produtiva das montadoras de aerogerador e dos fabricantes dos grandes componentes – pás e torres – foi apresentada nas tabelas 1 a 5 e previamente discutida ao longo das seções 2.1 a 2.3 do capítulo 2.

Considerando-se uma demanda média anual de aproximadamente 2 GW para os próximos anos e uma potência média nominal dos aerogeradores de 2,1 MW, a necessidade anual de aerogeradores no Brasil é de cerca de 950 unidades. A demanda correspondente em termos dos grandes componentes seria então de 2.850 pás e 950 torres. Analisando-se as tabelas 1 a 5 estima-se que até o final de 2014 a capacidade produtiva total de naceles chegaria a 3.300 MW ou 1.583 unidades (novamente para uma potência nominal média por máquina de 2,1 MW), a de torres de aço a 1.638 unidades, a de torres de concreto a 910 unidades e a de pás a 9.100 unidades. O Quadro 26 resume a relação entre demanda e capacidade produtiva para os componentes do aerogerador.

<table>
<thead>
<tr>
<th>Demanda média anual para 2 GW ou 950 aerogeradores</th>
<th>Capacidade nacional (nominal) do total dos fabricantes estimada para o final de 2014*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Naceles</td>
<td>950 unidades</td>
</tr>
<tr>
<td>Pás</td>
<td>2.850 unidades</td>
</tr>
<tr>
<td>Torres</td>
<td>950 unidades</td>
</tr>
</tbody>
</table>

Embora aparentemente exista uma sobrecapacidade no mercado nacional de grandes componentes, esta conclusão pode não corresponder à realidade quando se analisa o mercado a partir do fornecimento de aerogeradores. Algumas capacidades de pás e torres são específicas para determinadas montadoras, como no caso da WOBBEN, que é verticalizada. Outros exemplos são a Bravissat, que está homologada apenas para a GE, a AERIS, que está apta a fornecer pás atualmente somente para a ACCIONA, e a TECSIS, que destina grande parte da produção para exportação.

Outra questão importante a se considerar é que a capacidade de fornecimento de aerogeradores depende também dos prazos de implantação dos projetos. Como os leilões contratam diversos projetos com o mesmo prazo de início de operação, geralmente há uma concentração de pedidos em determinados períodos do ano, podendo resultar na incapacidade de atendimento de toda a demanda. As torres de aço, por suas grandes dimensões e custo, são produzidas na fase de instalação dos aerogeradores, sendo enviadas aos parques preferencialmente logo após a sua fabricação. As torres de concreto são fabricadas geralmente diretamente no parque, limitando assim o atendimento simultâneo a outras localidades.
Diferentemente da situação na Europa, no Brasil ainda não é comum o estabelecimento de contratos anuais de fornecimento ao longo da cadeia produtiva. Diversos fornecedores de componentes e serviços associados à sua fabricação vêm recebendo pedidos "por pulsos" e muitas vezes com prazos curtos de entrega, o que acaba comprometendo preços e volumes no curto prazo. No entanto, a otimização da capacidade de fornecimento da cadeia produtiva poderá ser atingida pelo estabelecimento de relações de parceria e do estabelecimento de contratos de fornecimento e compras de capacidade no médio ou longo prazo.

O principal indutor do processo de nacionalização e adensamento da cadeia de suprimento dos aerogeradores são os requisitos da Nova Metodologia do BNDES para o credenciamento ao FINAME. Atualmente sete fabricantes aderiram às novas regras, e a cada seis meses, ao longo do período de janeiro de 2013 até janeiro de 2016, é necessário atender a novas exigências, e realizar novas operações locais e/ou substituir itens importados por nacionais. A Metodologia foi formulada de forma progressiva, e os prazos são compatíveis com o desenvolvimento dos componentes que foram exigidos, sem, no entanto, deixar de haver desafios aos fabricantes para o atendimento das regras. No entanto, é imprescindível a antecipação dos fatos disparadores da produção dos componentes, a programação de compras (de componentes e serviços) e o planejamento apurado para a garantia do cumprimento das metas estabelecidas.

A capacidade nominal para a maior parte dos subcomponentes e demais itens relacionados à cadeia produtiva dos aerogeradores não é tão facilmente identificável quanto para os componentes. Há questões como, por exemplo, o atendimento a outros segmentos industriais e a dependência de investimentos que interferem com a identificação destas capacidades. Outro aspecto que muitas vezes influencia nesta questão da identificação é o tamanho do item a ser produzido. Diferentes tamanhos podem requerer diferentes máquinas com diferentes disponibilidades. Neste sentido, algumas capacidades são medidas em toneladas e não em número de itens. Também é preciso considerar que muitas das novas instalações iniciam suas operações de maneira gradativa, não desempenhando o máximo de sua capacidade já nos primeiros meses de produção. Diversas discussões sobre capacidade e gargalos produtivos para estes itens foram feitas em profundidade diretamente nos capítulos 2.4 a 2.6. No Quadro a seguir é apresentado um breve resumo dos principais gargalos verificados, organizado por componente.

<table>
<thead>
<tr>
<th>Torre</th>
<th>Tipo de gargalo</th>
<th>Observações</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapa de aço laminado</td>
<td>Dificuldade com relação a preço e entrega.</td>
<td>Há um único fornecedor no Brasil – USIMINAS.</td>
</tr>
</tbody>
</table>
| Flanges | Ainda não há fabricação local de anéis forjados e laminados para uso em flanges. | O atendimento à demanda prevista exige elevados investimentos em equipamentos e demoram cerca de um ano para efetivação. Potenciais fornecedores aguardam demanda firme do mercado para tomada de decisão.
<table>
<thead>
<tr>
<th>Pá</th>
<th>Tipo de gargalo</th>
<th>Observações</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resina epóxi</td>
<td>Dificuldade com relação a preço e entrega.</td>
<td>Atualmente há um único produtor no Brasil – DOW. Novos materiais demandam longos processos de certificação.</td>
</tr>
<tr>
<td>Tecidos</td>
<td>Dificuldade com relação a preço e entrega. Alguns tipos de fios e tecidos usados em alguns projetos não são produzidos no Brasil.</td>
<td>Atualmente há um único produtor de fios e tecidos no Brasil – OWENS CORNING. Novos materiais demandam longos processos de certificação.</td>
</tr>
<tr>
<td>Cubo</td>
<td>Tipo de gargalo</td>
<td></td>
</tr>
<tr>
<td>Carcaça</td>
<td>Capacidade de fundição e usinagem de modelos de cubo de maior tamanho e/ou complexidade. Fluxo produtivo - transferência das peças entre empresas (da fundição para a empresa de usinagem e depois para a empresa de pintura).</td>
<td>Algumas montadoras estão optando por não nacionalizar este item.</td>
</tr>
<tr>
<td>Rolamentos do passo</td>
<td>Capacidade de usinagem inferior à demanda prevista. Capacidade de rolamentos depende também do fornecimento de anéis forjados e laminados.</td>
<td>Atualmente há um único fabricante de rolamentos no Brasil – ROBRASA – e um único fabricante de anéis – UNIFORJA. Novos investimentos em linhas para usinagem de rolamentos e forjamento e laminação de anéis aguardam demanda firme do mercado para tomada de decisão.</td>
</tr>
<tr>
<td>Nacele</td>
<td>Tipo de gargalo</td>
<td></td>
</tr>
<tr>
<td>Estrutura da nacele</td>
<td>Eventual dificuldade no caso de estruturas mais complexas.</td>
<td>Possivelmente o desenvolvimento de novas peças estará sendo feito simultaneamente para várias montadoras.</td>
</tr>
<tr>
<td>Demais itens</td>
<td>A existência de gargalos, especialmente para os itens da tabela B e C do BNDES é atualmente de difícil avaliação.</td>
<td>Dependendo da estratégia de localização de cada montadora e há ainda prazo para definições.</td>
</tr>
<tr>
<td>Outros</td>
<td>Tipo de gargalo</td>
<td></td>
</tr>
<tr>
<td>Aço silício</td>
<td>Dificuldade com relação a preço e entrega.</td>
<td>Há um único fornecedor no Brasil – APERAN.</td>
</tr>
<tr>
<td>Mão de obra</td>
<td>Dificuldade na contratação de mão de obra produtiva em algumas regiões e para algumas atividades especializadas.</td>
<td></td>
</tr>
<tr>
<td>Guindastes</td>
<td>Possível dificuldade no atendimento para montagem dos aerogeradores.</td>
<td>Especialmente em casos de concentração desta atividade em determinados períodos.</td>
</tr>
</tbody>
</table>

Quadro 27 – Princípios gargalos produtivos por componente

3.5 COMPLEMENTARIDADES NA CADEIA NACIONAL

O termo complementaridade se refere à identificação de possíveis fabricantes que não atuam no setor, mas com potencial para tal. Um exemplo desta situação é o caso de empresas que fabricam peças e componentes de alumínio para a indústria automobilística e que teriam capacidade produtiva para fabricar os internos da torre – itens em alumínio.

Outro exemplo, que já é uma realidade na parte de serviços, é a entrada de empresas de engenharia civil / construtoras no setor eólico, aproveitando seus recursos e conhecimentos na execução das obras civis dos parques eólicos, incluindo as fundações das torres.
A análise das complementaridades na cadeia produtiva nacional da indústria eólica será tratada em maior profundidade no Capítulo 4 – Relatório de análise crítica para substituição de importação de bens e serviços.

3.6 METODOLOGIAS DE COMPRAS DOS FABRICANTES DE AEROGERADORES

A atividade de manufatura realizada pelos fabricantes de aerogeradores, conforme já mencionado anteriormente, está mais relacionada à montagem do cubo do rotor e da nacele, uma vez que os demais grandes componentes, como a torre e a pá, são geralmente adquiridos de terceiros. A terceirização da fabricação dos componentes é uma forma de reduzir a necessidade de capital e ter acesso a tecnologias de produção específicas, além de minimizar gastos logísticos – caso de pás e torres, cuja fabricação local, próxima ao parque eólico, pode contribuir significativamente para redução destes custos.

O grau de terceirização na fabricação de componentes varia de empresa para empresa de acordo com o modelo de negócio e competências internas. Para garantir o suprimento de componentes e/ou controlar os custos, algumas OEMs são verticalizadas e/ou têm participação acionária (quase-integração vertical) ou ainda estabelecem alianças estratégicas com seus fornecedores. Porém, até os produtores mais integrados verticalmente utilizam fornecedores externos, ao menos parcialmente, para o suprimento de alguns subcomponentes, como caixa multiplicadora de velocidade, geradores, além das pás e torres. Há fabricantes de aerogeradores que trabalham com dois ou até três fornecedores para cada componente essencial, quando possível, de modo a não depender de um único fornecedor. A especificidade e a importância da confiabilidade dos componentes incentivam as montadoras a estabelecerem contratos de longo prazo ou estruturarem acordos de forma a garantir um fornecimento contínuo e de alta qualidade (GODOY, 2008).

No caso de fabricantes multinacionais, é frequente a seleção de fornecedores com base na cadeia de fornecimento global da empresa. Atualmente a seleção de fornecedores e a sistemática de compras para fabricação de aerogeradores destinados a parques no Brasil são influenciadas pelas regras de concessão de financiamento (FINAME – BNDES), que privilegiem uma base de fornecedores locais, conforme já comentado anteriormente. Em geral, no Brasil, as montadoras de aerogeradores realizam suas aquisições tanto por sistemas como por componente. Há empresas mais verticalizadas e outras que preferem terceirizar a fabricação de diversos componentes.

No Brasil, atualmente somente a WOBBEN produz suas próprias pás. Com duas unidades produtivas no País, a empresa exporta pás para instalação em seus aerogeradores em parques no exterior, além de atender sua demanda local. A empresa também tem fábrica própria de
torres de concreto, além de executar internamente diversos processos associados à fabricação do gerador.

A ALSTOM, embora compre parte das torres de fornecedores locais, iniciou a fabricação própria deste item em sua unidade de Canoas/RS e já planeja uma segunda fábrica de torres na Bahia. A GAMESA, apesar de não ter fábrica própria, tem participação acionária na TORREBRAS.

A IMPSA, que utiliza a tecnologia de acionamento direto, como a WOBBEN, também executa internamente vários processos associados à fabricação do gerador. A ICSA, empresa pertencente ao mesmo grupo da IMPSA, fornece para esta última subcomponentes como o inversor e o painel de controle.

A WEG, fabricante brasileiro entrante no mercado eólico, planeja fabricar internamente diversos subcomponentes, aproveitando seu grande parque fabril e também sua expertise na área elétrica, tais como: gerador, transformador, painéis e conversor, além dos elementos estruturais da nacele e do eixo, executando internamente processos de usinagem e caldeiraria.

A GE tem vários fornecedores locais de torres de aço homologados e é o maior cliente da TECSIS para o fornecimento de pás destinadas aos aerogeradores de parques brasileiros e do mercado americano. A empresa procura desenvolver uma ampla base de fornecedores uma vez que seu nível de verticalização é baixo. No caso das torres, por exemplo, a GE transfere a administração da compra de todos os materiais e subcomponentes necessários para o fabricante, adquirindo então o item pronto. O fabricante, no entanto, deve seguir o projeto da GE e utilizar materiais/ subcomponentes de fornecedores aprovados. Outras montadoras, como a GAMESA, preferem se responsabilizar pela compra dos materiais e subcomponentes para a fabricação das torres e contratar apenas o serviço de manufatura.

Há sistemas, como de passo (pitch) e de giro (yaw), que podem ser adquiridos completos ou em partes para posterior montagem no cubo ou nacele. Há situações de montadoras que têm fornecedores instalados muito próximos de suas unidades produtivas, fornecendo além do produto algum serviço de pré-montagem. Os elementos internos das torres são preferencialmente comprados em kits de um mesmo fornecedor.

Cabe salientar que na maioria das vezes os itens fornecidos por terceiros devem ser previamente homologados pelas montadoras para uso em seus aerogeradores. Dependendo da criticidade técnica do item, este processo pode ser bastante complexo, demorado e custoso. Além da homologação do produto, geralmente é necessário homologar também o processo produtivo. No caso de pás e torres as montadoras costumam ter inspetores auditando os processos e acompanhando a liberação dos produtos.
4. RELATÓRIO COM ANÁLISE CRÍTICA PARA SUBSTITUIÇÃO DE IMPORTAÇÕES DE BENS E SERVIÇOS

4.1 RELATÓRIO COM ANÁLISE CRÍTICA DOS BENS IMPORTADOS NA CADEIA PRODUTIVA DE ENERGIA EÓLICA

A importação de bens na cadeia produtiva de energia eólica está associada basicamente aos componentes e subcomponentes do aerogerador, item crítico que representa cerca de 75% do investimento necessário à montagem de um parque eólico.

Apesar de já haver uma razoável capacidade produtiva local, há diversos motivos gerais para a não aquisição de componentes e subcomponentes no mercado nacional, tais como:

» custos internos maiores;
» falta de capacidade ou capacidade produtiva local limitada;
» capacidades ociosas em outros países;
» preferência por fornecedores globais;
» ausência de fabricantes locais (e homologados) para determinados itens.

Muitas destas motivações são suplantadas pelas regras de exigência de conteúdo local para financiamento dos parques pelo BNDES (ver detalhes no Anexo 1 – Metodologia do BNDES para credenciamento de aerogeradores). Isto é, apesar, por exemplo, de o item fabricado localmente ter um custo maior que o importado, a necessidade de atender os requisitos de conteúdo local é preponderante na decisão de compra das montadoras e fabricantes de componentes. Assim, pode-se considerar ainda como motivador (ou não inibidor da importação) o fato de determinado item não ser exigido pelo BNDES. Parece plausível afirmar que hoje um aerogerador não é adquirido integralmente da China, onde há capacidade produtiva e os preços são menores, principalmente em razão da necessidade de financiamento para implantação do parque eólico. Os investimentos na instalação de parques eólicos são da ordem de centenas de milhões de reais. O financiamento de interesse então é o dos bancos de fomento, com baixas taxas de juros, sendo que 90% de todos os projetos executados no País utilizam este tipo de recurso.
Cabe salientar que a indústria eólica é ainda jovem no Brasil, tendo iniciado com mais expressão somente a partir de 2009 (fase pós-PROINFA\(^5\)), com o início das contratações através do mecanismo de leilão. A partir de uma demanda crescente de energia de fonte eólica no período de 2009 a 2011 e com volumes significativos de contratação (de 1,8 GW a 2,9 GW anuais), aliada às exigências de conteúdo local, a cadeia produtiva iniciou sua estruturação. A metodologia do FINAME do BNDES é talvez hoje o principal direcionador para a localização\(^6\) da cadeia produtiva.

Os maiores custos para componentes e subcomponentes produzidos localmente estão relacionados principalmente ao custo interno da chapa de aço. O aço é a principal matéria-prima dos aerogeradores que usam torres de aço. Segundo a ABIMAQ, somente em 2013 o aço subiu cerca de 16% no Brasil. O custo da chapa importada é 30% inferior ao custo da compra feita localmente, da Usiminas, atualmente única fornecedora deste tipo de aço no País. Há ainda outros monopólios em termos de materiais, como o aço para os fundidos (GERDAU), o aço-silício (APERAN), a resina epóxi (DOW) e os tecidos de fibra de vidro (OWES CORNING) das pás. Outra diferença em favor dos importados é o custo com tributos. Um aerogerador importado é taxado em 14% enquanto que os impostos que incidem na cadeia produtiva nacional totalizam 26,5% (ABIMAQ, 2013). Os custos relativos à aquisição de energia elétrica para a manufatura dos componentes são mais impactantes para as fundições, que demandam alta carga na operação dos fornos. A ABINEE chama a atenção para as diferenças dos custos com logística dos componentes. Os produtos importados podem utilizar transporte naval internacional, enquanto os fabricados nacionalmente podem usar somente navios de bandeira brasileira, de custos mais elevados e de menor disponibilidade.

Em termos de mão de obra, a avaliação de custos para o segmento eólico é de difícil precisão, uma vez que ainda não há dados mais específicos neste contexto. Uma análise mais ampla de custos e competitividade industrial brasileira foi feita pela CNI em seu relatório “Competitividade Brasil 2013: comparação com países selecionados” (CNI, 2013). Neste estudo, o custo de mão de obra de diversos países é comparado utilizando-se a análise conjunta dos seguintes critérios (variáveis): remuneração da mão de obra e produtividade do trabalho na indústria. O Brasil, embora tenha um valor de remuneração baixo comparativamente a diversos outros países, tem em geral uma baixa produtividade do trabalho na indústria. O posicionamento do País em termos de mão de obra resultou então como inferior a países como, por exemplo, Coreia, Espanha e México, mas mais favorável em relação, por exemplo, a China e a Índia.

As questões referentes à falta de capacidade ou capacidade limitada foram tratadas no Capítulo 3 – Relatório do mapeamento da cadeia produtiva nacional de bens e serviços (ver tópico “Descritivo da capacidade de produção” para detalhes). Complementam estas informações o conteúdo apresentado no item 4.2 – Análise crítica dos gargalos identificados pela indústria.

\(^5\) PROINFA – Programa de Incentivos às Fontes Renováveis – Programa iniciado em 2002 e que contratou a preços subsidiados 1,3 GW de capacidade instalada (mais informações sobre o programa são apresentadas no Capítulo 4.4).

\(^6\) Como localização, no âmbito deste relatório, entende-se a implantação, no Brasil, de unidades produtivas para fornecimento de bens e de escritórios ou bases para prestação de serviços.
nacional deste relatório... Hoje falta capacidade ou há capacidade limitada basicamente para flanges, tecidos de fibra, rolamentos, fundidos e usinados de grande porte e maior complexidade.

Um fator a considerar é o pequeno número de montadoras brasileiras, ou montadoras cuja base é o Brasil – apenas a WEG (nova entrante) e a IMPSA. As montadoras estrangeiras, maioria no País, por sua atuação global, naturalmente vão preferir se valer do global sourcing e/ou ocupar as suas ociosidades e de seus parceiros em outros países onde têm unidades manufatureiras. A crise econômica na Europa e, mais recentemente, a queda das instalações eólicas na China e Índia deixaram muitas fábricas ociosas nestas regiões. Alguns especialistas do setor apontam também o fato de a decisão de compra das subsidiárias brasileiras ser dependente de autorização da matriz no exterior, além do desconhecimento por parte dos executivos estrangeiros sobre o funcionamento do Brasil, basicamente em relação a questões burocráticas e tributárias.

No Brasil não há ainda fabricantes para itens de alta tecnologia tais como sistemas de controle, sensores, anêmômetros, caixa multiplicadora (caixa de engrenagem), rolamentos (principal e de giro) e imãs permanentes. Também não há produtores de alguns insumos utilizados na confecção das torres de concreto e no núcleo das pás, além do fio ou tecido de fibra de carbono e alguns tipos especiais de fio ou tecido de fibra de vidro.

O Quadro 28 traz uma listagem dos principais bens importados e as correspondentes motivações para sua não aquisição no mercado interno, seguidas de observações sobre as particularidades envolvidas nestas questões.

<table>
<thead>
<tr>
<th>Item importado</th>
<th>Principais motivações para importação</th>
<th>Observações (particularidades envolvidas)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nacele completa</td>
<td>Capacidades ociosas em outros países</td>
<td>Há montadoras ainda em processo de instalação de suas unidades de montagem de naceles. Exigência do BNDES a partir de julho de 2015.</td>
</tr>
<tr>
<td>Chapa de aço</td>
<td>Custo</td>
<td>À regra do BNDES permite que até 30% do total utilizado em torres de aço seja importado.</td>
</tr>
<tr>
<td>Flanges (forjadas)</td>
<td>Custo e capacidade</td>
<td>Pela regra do BNDES somente a partir de julho de 2015 os itens forjados utilizados nas torres (mínimo de 60%) deverão ser nacionais.</td>
</tr>
<tr>
<td>Parafusos</td>
<td>Custo</td>
<td>Pela regra do BNDES somente a partir de julho de 2014 deverão ser nacionais.</td>
</tr>
<tr>
<td>Portas e escotilhas</td>
<td>Custo</td>
<td>Itens não exigidos pelo BNDES.</td>
</tr>
<tr>
<td>Cimentos, aditivos e grautes especiais</td>
<td>Ausência de fornecedor local</td>
<td>Uso em torres de concreto.</td>
</tr>
<tr>
<td>Insertos metálicos</td>
<td>Custo</td>
<td>Uso em torres de concreto. Não exigido pelo BNDES.</td>
</tr>
<tr>
<td>Elementos internos das torres</td>
<td>Ausência de fornecedor (homologado)</td>
<td>Pela regra do BNDES somente a partir de julho de 2014 deverão ser nacionais.</td>
</tr>
<tr>
<td>Resina epóxi para pás</td>
<td>Custo</td>
<td>Apenas um produtor nacional (DOW).</td>
</tr>
<tr>
<td>Tecidos de fibra de vidro</td>
<td>Capacidade e custo</td>
<td>Apenas um produtor nacional (OWENS) e alguns tipos de fios não são produzidos ou tecidos localmente.</td>
</tr>
<tr>
<td>Tecidos de fibra de carbono</td>
<td>Ausência de fornecedor local</td>
<td>Usada em menor quantidade (mais cara). Importada geralmente da Alemanha.</td>
</tr>
<tr>
<td>Item importado</td>
<td>Principais motivações para importação</td>
<td>Observações (particularidades envolvidas)</td>
</tr>
<tr>
<td>---</td>
<td>---------------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>Espumas de PVC, PET, madeira balsa para pás</td>
<td>Ausência de fornecedor (homologado)</td>
<td>Tecnologia dominada por empresas estrangeiras e a demanda é considerada baixa para a localização da produção no Brasil.</td>
</tr>
<tr>
<td>Massas e revestimentos para acabamento das pás</td>
<td>Ausência de fornecedor (homologado)</td>
<td>Tecnologia dominada por empresas estrangeiras (alemãs). A grande demanda justifica a localização da produção.</td>
</tr>
<tr>
<td>Carcaça do cubo</td>
<td>Custo e capacidade</td>
<td>Dificuldade nos tipos de maior tamanho e complexidade. Pela regra do BNDES há alternativa para a localização deste item (pode ser substituído por outro).</td>
</tr>
<tr>
<td>Rolamento do passo</td>
<td>Capacidade e custo</td>
<td>Apenas um fornecedor local (ROBRASA).</td>
</tr>
<tr>
<td>Extensores</td>
<td>Custo</td>
<td>Item de uso específico de algumas montadoras.</td>
</tr>
<tr>
<td>Sistema de passo</td>
<td>Ausência de fornecedor e custo</td>
<td>Alguns dos subcomponentes ainda em processo de nacionalização. Itens obrigatórios pelo BNDES somente a partir de julho de 2015.</td>
</tr>
<tr>
<td>Estrutura da nacele</td>
<td>Capacidades ociosas em outros países, custo</td>
<td>Pela regra do BNDES há alternativa para a localização deste item (pode ser substituído por outro).</td>
</tr>
<tr>
<td>Acessórios (anemômetros, sensores...)</td>
<td>Ausência de fornecedor</td>
<td>A capacidade nacional para o desenvolvimento de itens de tecnologia microeletrônica e automação, em geral, é considerada baixa.</td>
</tr>
<tr>
<td>Rolamento de giro (YAW) e rolamento do eixo principal</td>
<td>Ausência de fornecedor</td>
<td>Tecnologia dominada por empresas estrangeiras e maquinário específico – item de grande porte e alta precisão. É item de nacionalização opcional para o BNDES.</td>
</tr>
<tr>
<td>Eixo principal</td>
<td>Custo, capacidades ociosas em outros países</td>
<td>É item de nacionalização opcional para o BNDES.</td>
</tr>
<tr>
<td>Sistema de Yaw</td>
<td>Ausência de fornecedor</td>
<td>Em processo de nacionalização. É item de nacionalização opcional para o BNDES.</td>
</tr>
<tr>
<td>Talha</td>
<td>Custo</td>
<td>É item de nacionalização opcional para o BNDES.</td>
</tr>
<tr>
<td>Inversor/conversor</td>
<td>Ausência de fornecedor</td>
<td>Em processo de nacionalização. É item de nacionalização opcional para o BNDES.</td>
</tr>
<tr>
<td>Sistema de freios</td>
<td>Custo</td>
<td>É item de nacionalização opcional para o BNDES.</td>
</tr>
<tr>
<td>Sistema de controle</td>
<td>Ausência de fornecedor</td>
<td>Não é exigido pelo BNDES.</td>
</tr>
<tr>
<td>Slip ring</td>
<td>Ausência de fornecedor</td>
<td>É item de nacionalização opcional para o BNDES.</td>
</tr>
<tr>
<td>Gerador</td>
<td>Capacidades ociosas em outros países, custo, ausência de fornecedor</td>
<td>Há potenciais fornecedores locais. Há alternativa para localização deste item para o BNDES.</td>
</tr>
<tr>
<td>Caixa de engrenagem</td>
<td>Ausência de fornecedor</td>
<td>Tecnologia dominada por empresas estrangeiras. Há alternativa para localização deste item para o BNDES.</td>
</tr>
<tr>
<td>Elementos estruturais do rotor e estator</td>
<td>Capacidades ociosas em outros países, custo</td>
<td>Há potenciais fornecedores locais. Há alternativa para localização deste item para o BNDES.</td>
</tr>
<tr>
<td>Núcleo magnético</td>
<td>Custo</td>
<td>Utiliza aço silício – há apenas um produtor nacional (APERAN). Não é exigido pelo BNDES.</td>
</tr>
<tr>
<td>Imãs permanentes</td>
<td>Ausência de fornecedor</td>
<td>Não é exigido pelo BNDES.</td>
</tr>
</tbody>
</table>

Quadro 28 – Itens importados na cadeia eólica, motivações para importação e particularidades envolvidas
Mais detalhes sobre capacidade podem ser verificados no Capítulo 3 – Relatório do mapeamento da cadeia produtiva nacional de bens e serviços. Nacionalização, no contexto deste relatório, se refere à fabricação ou montagem do item no Brasil. Existem itens de nacionalização opcional para o BNDES, isto é, a montadora tem flexibilidade, em alguns casos, podendo optar pela substituição da nacionalização de determinado item exigido por outro, ou por outros. Para detalhes sobre exigências do BNDES ver metodologia no Anexo 1. Processo de nacionalização (ou localização) diz respeito ao desenvolvimento de fornecedores que fabricarão os itens localmente (no Brasil) ou à instalação de unidades produtivas de empresas estrangeiras no Brasil que passarão então a fornecer os itens a partir destas unidades.

Como visto, há diferentes motivações para a importação de componentes e subcomponentes do aerogerador pelas montadoras. Independentemente destas motivações, muitos dos itens listados serão localizados por conta da necessidade de financiamento do BNDES para a compra dos aerogeradores. Há processos de localização em andamento principalmente para a montagem de naceles e para a fabricação dos elementos internos de torres, dos sistemas de passo (Pitch) e giro (Yaw) e para o conversor/inversor.

Além destes processos, há possibilidades de localização de outros itens como flanges, portas e escotilhas das torres, blend da resina para fabricação de pás, tecidos de fibra, massas e revestimentos para acabamento das pás, extensores, talha e o gerador, além da ampliação da capacidade para grandes fundidos e usinados (carcaça do cubo, estrutura da nacele, rolamentos, eixo principal, elementos estruturais do rotor e estator). Na maior parte destes casos, a localização depende da decisão de investimentos na aquisição de máquinas ou equipamentos. Por exemplo, para o caso dos tecidos de fibra são necessários investimentos na aquisição de teares para a tecelagem dos fios. Para a fabricação de flanges forjadas há necessidade de aquisição de fornos de forjaria e tratamento térmico, prensa e laminadora.

A fabricação nacional de massas e revestimentos para o acabamento das pás requer o desenvolvimento de formulações específicas, capazes de atender às elevadas exigências de resistência à erosão e variações de temperatura, além de pequenos investimentos em adequação de alguns equipamentos produtivos. Empresas brasileiras (ou subsidiárias brasileiras de fabricantes de tintas estrangeiras) atuantes nos segmentos de tintas industriais, de aviação ou de manutenção e proteção são potenciais fornecedores deste item. O desenvolvimento das formulações pode ser facilitado por acordos tecnológicos (parcerias, licenciamento ou compra de tecnologia) e/ou pela instalação no país de laboratórios dotados de equipamentos específicos, requeridos para execução de testes de resistência à erosão, como os de rain erosion e sand erosion. A disponibilidade local de equipamentos para avaliação e certificação dos laminados obtidos no processo de infusão das pás também potencializa o desenvolvimento de diferentes compósitos (combinações de resinas e diferentes mantas/tecidos de fibra), facilitando a substituição de insumos importados por nacionais.

Empresas potenciais para o caso de flanges são as próprias fabricantes de torres de aço, especialmente no caso de flanges calandradas, forjarias e empresas metalmecânicas (com
experiência em processos de forjamento e laminação) no caso de flanges forjadas. Empresas metalmecânicas com conhecimento em usinagem, além das fundições, também são potenciais fabricantes de cubos e elementos estruturais da nacele e gerador. No caso de fundidos e usinados é interessante que a empresa disponha de todos os processos necessários (fundição, usinagem, metalização e pintura), ou então que tenha subcontratados próximos de suas instalações, pois a logística pode ser complexa e onerosa por se tratar de peças de grandes dimensões. Porém, é importante salientar que, considerada a demanda atual, não há espaço para muitos players neste mercado – os investimentos em fornos, laminadoras e centros de usinagem de grande porte são expressivos e de uso limitado ao segmento eólico.

Há ainda outros fornecedores possíveis ou potenciais para o setor, empresas que atuam em outros segmentos, mas com capacidade para atender o eólico. Por exemplo, empresas de pré-moldados e construção civil são possíveis fabricantes de torres de concreto; fabricantes de peças automotivas em alumínio extrudado são potenciais fabricantes de elementos internos de torres.

Há no País fabricantes competitivos de geradores para outros segmentos industriais, como a WEG e a ABB, que teriam conhecimento e capacidade para a fabricação dos geradores eólicos para turbinas com caixa multiplicadora. Também a INGETEAM, que já se prepara para fornecer conversores e painéis de controle para a indústria eólica, poderia produzir localmente os geradores. Nestes casos, porém, há uma dificuldade associada a questões de propriedade intelectual, uma vez que as montadoras têm, geralmente, sua própria tecnologia de geradores e, da mesma forma, os fornecedores.

Itens de maior tecnologia como os sistemas de passo, de Yaw e de controle, anemômetros, sensores, caixa de engrenagem e imãs permanentes são fortes candidatos a programas de inovação com financiamento público e em parceria com universidades e centros de pesquisa, de modo a desenvolver conhecimento e fornecedores nacionais (os sistemas de passo e Yaw estão em processo de nacionalização por empresas estrangeiras). Para itens como resina e fibra há oportunidade para entrada de empresas multinacionais que ainda não produzem no Brasil.

O Quadro 29 resume os itens com possibilidade de localização, apontando também algumas empresas/indústrias com potencial para seu fornecimento e respectivas necessidades para sua viabilização.
Quadro 29 – Itens com possibilidade de localização, empresas potenciais e necessidades para viabilização

<table>
<thead>
<tr>
<th>Itens para localização</th>
<th>Empresas/Indústrias potenciais</th>
<th>Necessidades para viabilização</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resinas e fios de fibra para pás</td>
<td>Empresas multinacionais desses segmentos que ainda não têm unidades fabris no Brasil (Momentive, CPIC...)</td>
<td>Investimentos em reatores, misturadores e fornos.</td>
</tr>
<tr>
<td>Tecidos de fibra para pás</td>
<td>Fabricantes de fios (OWENS, SAERTEX, CPIC).</td>
<td>Aquisição de teares.</td>
</tr>
<tr>
<td>Compósitos para estrutura das pás</td>
<td>Empresas usuárias seriam as fabricantes de pás (TECSSIS, AERIS...) e o centro de testes poderia estar inserido em instituições como o IPT.</td>
<td>Instalação de laboratórios com equipamentos para testes dos produtos para avaliação de novas combinações de resinas e tecidos (de fabricação nacional).</td>
</tr>
<tr>
<td>Massas e revestimentos para o acabamento de pás</td>
<td>Empresas brasileiras (ou subsidiárias brasileiras de fabricantes de tintas estrangeiras) atuantes nos segmentos de tintas industriais, de aviação ou de manutenção e proteção (WEG, DUPONT, AKZO...)</td>
<td>Desenvolvimento de formulações específicas (revestimentos de alta performance). Instalação de laboratórios com equipamentos para testes dos produtos</td>
</tr>
<tr>
<td>Flanges forjadas para torres de aço</td>
<td>Fabricantes de torres de aço (ENGEBA, INTECNIAL, BRASILSAT...)</td>
<td>Instalação de linhas de produção específicas para estes produtos.</td>
</tr>
<tr>
<td>Elementos internos das torres</td>
<td>Fabricantes de peças automotivas em alumínio</td>
<td>Conhecimento dos requisitos técnicos e processos de homologação.</td>
</tr>
<tr>
<td>Torres de concreto</td>
<td>Empresas de pré-moldados e da construção civil</td>
<td>Conhecimento específico em projeto e instalação de torres.</td>
</tr>
<tr>
<td>Elementos estruturais da nacele e gerador</td>
<td>Fundições e empresas metalmecânicas com conhecimento em usinagem (ROMI, BR Metals ...)</td>
<td>Aquisição de fornos e centros de usinagem de grande porte, instalação de cabines de metalização e pintura.</td>
</tr>
<tr>
<td>Geradores (para aerogeradores com caixa multiplicadora)</td>
<td>Fabricantes de geradores para outros segmentos já atuantes no país (WEG, ABB...)</td>
<td>Não haveria maiores dificuldades para estas empresas.</td>
</tr>
<tr>
<td>Sistemas de passo, de Yaw e de controle, anemômetros, sensores, caixa de engrenagem e imãs permanentes</td>
<td>Indústrias mecânicas e do segmento eletroeletrônico e automação</td>
<td>Desenvolvimento e/ou aquisição de conhecimento/tecnologia.</td>
</tr>
</tbody>
</table>
4.2 RELATÓRIO COM ANÁLISE CRÍTICA DOS SERVIÇOS IMPORTADOS NA CADEIA PRODUTIVA DE ENERGIA EÓLICA

Em termos de serviços, o mercado brasileiro está hoje bem mais preparado. Há fornecedores locais para os diversos serviços necessários a todas as fases do desenvolvimento de projetos eólicos. Existe ampla oferta de serviços de desenvolvimento de projetos de parques, de serviços de apoio à negociação com fornecedores e compradores/leilão, serviços de apoio à pré-construção, serviços para implantação dos parques (logística e execução de obras), serviços de operação e manutenção, além de serviços associados à certificação de aerogeradores e treinamento técnico, entre outros.

Várias empresas estrangeiras têm montado escritórios no Brasil com técnicos especializados para atendimento ao mercado brasileiro. Muitas das empresas atuantes no Brasil são escritórios de empresas estrangeiras com técnicos especializados (estabelecidos em parceria ou não com empresas nacionais), principalmente europeias que perceberam o potencial do mercado brasileiro de eólica e decidiram estabelecer uma base local. Das empresas de serviço mapeadas no Capítulo 3, mais de 40% são de origem estrangeira – da Espanha, Alemanha, Portugal, Dinamarca, França, Holanda e EUA. A base local é importante para o atendimento próximo e ágil aos clientes. Cabe salientar que alguns processos envolvidos nas atividades de serviço, como por exemplo, cálculos e análises técnicas de maior complexidade, são encaminhados para os centros no exterior, que, após sua execução, devolvem ao escritório local para que este faça a entrega ao cliente.

Há cinco anos, porém, não era esta a realidade do setor. Existia uma dependência de certificadores, de empresas de engenharia e de desenvolvedoras estrangeiras. Muitas empresas que atuavam em outros segmentos passaram a incluir a eólica no seu portfólio. Um exemplo disso são as empresas de engenharia, que visualizaram no setor eólico uma forma de compensar quedas de demanda em outros segmentos industriais. Há serviços, como a execução de obras civis e elétricas, necessários a implantação dos parques, que são atividades bem comuns no Brasil e, portanto, não se aplica a questão de importação.

De modo geral, os clientes (proprietários de parques) não veem necessidade de localizar novos serviços, mas há interesse em ter mais opções de fornecedores locais. Porém, segundo alguns proprietários, existem alguns serviços que poderiam ser melhorados em termos da qualidade oferecida, como a certificação de dados de vento. O uso de modelos meteorológicos mais adequados somado a um maior conhecimento técnico dos profissionais que desempenham estas atividades deve contribuir significativamente para maior confiabilidade dos resultados. A avaliação do recurso eólico é muito importante, pois está relacionada à competitividade e à alavancagem financeira do projeto. Adicionalmente, nos leilões existe a necessidade de garantir a energia produzida e há penalidades em caso de seu não cumprimento. Em 2013, a Empresa de Pesquisa Energética (EPE) mudou o critério de avaliação de energia, com
adoção do critério de P90 – probabilidade de 90% que a produção de energia seja determinado valor ou mais – em substituição ao P50, utilizado em outros países. A mudança teve como objetivo proporcionar maior segurança em termos da produção efetiva dos parques eólicos. Desta maneira, a minimização da incerteza associada à avaliação do recurso eólico é muito importante, e a adoção das melhores práticas e metodologias para sua avaliação contribui significativamente neste sentido.

No entanto, para as montadoras de aerogeradores e fabricantes de componentes há um tipo de serviço no qual ainda há uma dependência de empresas estrangeiras – o projeto dos aerogeradores e seus componentes. Há diversas empresas estrangeiras especializadas dedicadas ao desenvolvimento de projetos destas máquinas e componentes para posterior comercialização ou licenciamento. A WEG, por exemplo, estabeleceu uma joint venture com a empresa americana Northern Power Systems®, empresa especializada no fornecimento de consultoria técnica, serviços de projeto e licenciamento de tecnologia para o mercado eólico, para o projeto de seus aerogeradores de grande porte.

Com o crescimento no número de parques em operação, oportunidades estão surgindo no mercado O&M. Empresas que já atuavam no setor elétrico, na operação e manutenção de hidrelétricas e termoelétricas estão estendendo suas operações de forma a atender também o setor eólico. Há espaço para consultores e profissionais técnicos para avaliação de contratos. Algumas grandes empresas do setor elétrico, proprietárias de parques, e com expertise em O&M em outros tipos de usinas (por exemplo, PCHs) estão desenvolvendo estruturas internas para execução desta atividade, em geral, em parceria com a(s) montadora(s) fornecedora(s) de seus aerogeradores. Há, no entanto, dificuldades com relação à disponibilidade de mão de obra qualificada para esta atividade. Também é interessante o desenvolvimento de mão de obra operacional para manutenção de aerogeradores em localidades próximas aos parques.

Há serviços com fornecimento local, mas que são considerados críticos, como guindastes e parte de licenciamento ambiental. Outros potenciais fornecedores de serviços são, por exemplo, empresas de transporte e movimentações, que atuam com cargas grandes, empresas de engenharia e construtoras, empresas de montagem eletromecânica, empresas de consultoria do setor de energia, da área ambiental, de assessoria jurídica e negocial e seguradoras.

4.3 RELATÓRIO COM ANÁLISE CRÍTICA DO SETOR

Os tópicos a seguir contemplam uma visão geral do setor eólico, abordando diversos aspectos que, em alguma medida, influenciam o desenvolvimento de sua cadeia produtiva, tais como: a metodologia do FINAME do BNDES, os gargalos produtivos identificados pela indústria nacional, o Regime Especial de Incentivos para o Desenvolvimento da Infraestrutura (REIDI), a sistemática

7 http://www.northernpower.com/nps-technologies/
de contratação de projetos de energia, as características da indústria metalmecânica nacional para produção de bens seriados e, finalmente, o potencial de desenvolvimento de tecnologias nacionais associadas.

4.3.1 ANÁLISE CRÍTICA DOS REQUISITOS DO FINAME DO BNDES EM RELAÇÃO AOS FABRICANTES NACIONAIS

A maioria dos entrevistados entende como justa e muito bem elaborada a metodologia para obtenção de financiamento para os aerogeradores. Afinal, é o dinheiro do povo brasileiro que está sendo emprestado e nada mais justo que haja em contrapartida um benefício para o País em termos de investimentos em fábricas e contratação de mão de obra.

Em junho de 2012, após auditorias realizadas pelo BNDES nas instalações produtivas das montadoras, houve o descredenciamento de seis empresas, em virtude de descumprimento de compromissos de nacionalização assumidos perante o Banco. De forma a melhor controlar e garantir os níveis de conteúdo local e com o objetivo de ampliar a quantidade de componentes nacionais nos equipamentos, em dezembro de 2012 foi lançada uma nova regra, específica para aerogeradores, estabelecendo metas físicas, divididas em etapas, que devem ser cumpridas conforme cronograma estabelecido. Segundo informado pelo BNDES, uma das premissas para elaboração da regra foi seguir apoiando a cadeia produtiva já existente e incentivar seu adensamento, através da gradativa incorporação de novos componentes e processos produtivos em marcos temporais semestrais. Além disso, há alternativas de flexibilidade na adoção de alguns itens, levando-se em conta os prazos e dificuldades de desenvolvimento e respeitando as estratégias individuais de cada fabricante de aerogerador.

Como resultado desta metodologia, até o momento, o BNDES aponta investimentos em 20 novas unidades industriais, concluídas ou em fase de construção, e na ampliação, remodelagem e/ou instalação de novas linhas de produção em 14 unidades industriais existentes. Há ainda a perspectiva de mais outros investimentos em elos importantes da cadeia.

Em janeiro de 2014 houve um ajuste interno de seis meses nos prazos de nacionalização de componentes a serem nacionalizados. Ainda que houvesse inúmeras iniciativas em curso, nem todas atingiram a maturação dos investimentos no volume ou nos prazos necessários para o atendimento da meta de janeiro. Desta forma o BNDES, sem prejuízo dos prazos finais, dos compromissos de implantação de fábricas de naceles e sem abdicar da nacionalização de qualquer componente, contemplou as necessidades da cadeia de suprimentos e dos fabricantes de aerogeradores. Há estudos sobre incentivo à exportação (financiamento de parques na América Latina com conteúdo local brasileiro) e para o aumento do conteúdo nacional exigido. Os fabricantes entrevistados sugeriram diversas possíveis complementações à metodologia, tais como:
» concessão de benefício adicional para fabricantes com conteúdo local acima do exigido;
» processo de implementação do conteúdo local mais gradativo, uma vez que o desenvolvimento de fornecedores de alguns componentes pode demandar até 12 meses, ou mais, dependendo das adaptações fabris e/ou investimentos necessários e do processo de qualificação/homologação do item;
» criação de mecanismos para controle de oligopólio e/ou sistemática de abertura de custos para prevenção de práticas de preços abusivos por empresas locais que são únicas fornecedoras de determinado item;
» inclusão das regras de conteúdo local para fins de credenciamento de projetos eólicos nos leilões de contratação de energia – esta é uma reivindicação formal da ABIMAQ, através de seu Conselho de Eólica, com objetivo de prevenir a importação de aerogeradores com financiamento externo, principalmente os oriundos da China (no Brasil, no Estado de Sergipe, já existe um parque da Desenvix financiado com capital chinês e equipado com máquinas da montadora chinesa Sinovel). Segundo informado pela ABIMAQ, além de grande capacidade instalada, as montadoras chinesas podem se utilizar de financiamento de dois bancos de investimento chineses, nos mesmos moldes do BNDES.

Os investimentos necessários para instalação de unidades de montagem de aerogeradores no Brasil estão na faixa dos R$ 100 milhões. Este fator, somado ao modelo dos leilões que incita uma alta competição entre as montadoras, com redução das margens de lucro, impõe às montadoras uma decisão difícil – ficar no Brasil e então realizar os investimentos sem garantias de retorno, ou postergar os investimentos, abrir mão de uma fatia do mercado e talvez não conseguir retornar quando o momento for mais favorável. Das seis empresas que haviam sido descredenciadas, somente a ACCIONA retornou até o momento. A VESTAS recentemente assinou carta de intenções com o BNDES, sendo que já existe um planejamento concreto para sua adequação às regras do FINAME até o último trimestre de 2015. A SIEMENS ainda não decidiu sobre sua permanência ou não no mercado brasileiro, estando credenciadas hoje, além da ACCIONA, a WOBBEN, IMPISA, WEG, GE, GAMESA e ALSTOM. Uma questão a considerar é que o credenciamento ocorre por modelo de máquina. Assim, cada modelo tem suas dificuldades específicas, dependendo da configuração/tecnologia do aerogerador. Além disso, evoluções tecnológicas, bastante comuns nesta indústria, com lançamento de novos modelos, vão demandar um novo processo de credenciamento.

Os impactos imediatos da metodologia do BNDES sobre a cadeia produtiva envolvem:

» segurança para novos investimentos, por promover uma regra estável e transparente;
» a estratégia de compra das montadoras, que passa a ser norteada prioritariamente pelas normas de conteúdo nacional;
» alegado aumento do custo do aerogerador no curto prazo, ainda que parte dos aumentos observados sejam atribuídos à variação cambial;
» maior capacidade de fornecimento resultante do fortalecimento da presença das montadoras no Brasil e do crescente número de fornecedores de componentes nacionalizados. Ainda que o processo de nacionalização esteja em curso, os investimentos
e esforços observados já configuram um cenário irreversível de enraizamento da indústria no país;

» indução de planejamento e programação de compras de partes, peças e serviços e do estabelecimento de relações de parceria entre fornecedores e clientes, uma vez que esta depende do atendimento aos requisitos dos marcos nos prazos correspondentes. É relevante considerar que a falta de capacidade é do fabricante do aerogerador, mas o fenômeno é dependente da cadeia de componentes e peças associada. Esta eventual baixa na oferta de aerogeradores pode acarretar no aumento do preço do aerogerador.

Esta situação de preços mais altos / menor oferta de aerogeradores\(^8\) estimula os empreendedores a considerarem a importação de aerogeradores, especialmente da China (menor preço de máquina do mercado), e consequentemente a busca de alternativas de financiamento que não o BNDES.

Cabe salientar que o conteúdo local não deve limitar a evolução tecnológica das máquinas, pois o modelo competitivo dos leilões pressiona os fabricantes a ofertarem os modelos de melhor performance – menor custo para máximo rendimento. Ressalta-se, porém, que apesar da Metodologia do BNDES estar sendo a grande incentivadora da estruturação de uma cadeia local no sentido da produção (ou montagem), ainda não são mensuráveis seus efeitos sobre o desenvolvimento tecnológico nacional. Com apenas um ano e meio de implantação, entende-se que as transferências tecnológicas, treinamentos de profissionais nos países desenvolvedores dos aerogeradores, demanda por soluções locais para desenvolvimentos tecnológicos, entre outros efeitos desta natureza, não acumularam massa crítica e / ou efeitos agregados suficientes para serem identificados por esse estudo. Observa-se uma evolução do modelo industrial do setor no País, com montagem local do aerogerador, fabricação local de diversos componentes, tais como torres, pás, subcomponentes do cubo e da nacele, e importação de um número menor de itens. Há hoje no Brasil conhecimento sobre processos de montagem dos aerogeradores e sobre processos de fabricação de diversos componentes (torres, pás, elementos estruturais da nacele, carcaça do cubo do rotor, entre outros). Porém, não há ainda conhecimento específico para o desenvolvimento do projeto da maior parte destes componentes, ou seja, não há este domínio tecnológico por parte das empresas nacionais (ver mais detalhes no Capítulo 4.6).

4.3.2 ANÁLISE CRÍTICA DOS GARGALOS IDENTIFICADOS NA INDÚSTRIA NACIONAL

A indústria de energia eólica instalada no Brasil, conforme comentado anteriormente, está ainda em sua fase de estruturação e adequação ao mercado e enfrenta diversas dificuldades na busca por sua consolidação. Os principais gargalos verificados estão relacionados à falta

\(^8\) Para mais detalhes sobre capacidade produtiva da cadeia eólica nacional e demanda de aerogeradores ver relatório do Capítulo 3.
de competitividade dos itens de produção local frente aos importados, à falta de capacidade produtiva de componentes e subcomponentes e à falta de capacidade de alguns serviços associados ao desenvolvimento e implantação dos projetos de parques eólicos. Alguns empresários do setor ressaltam, adicionalmente, a falta de experiência dos fabricantes locais.

Os preços dos aerogeradores fabricados no Brasil tiveram aumentos em 2013 da ordem de 10 a 15% (ROCHAS, 2013) e são superiores aos dos aerogeradores fabricados na Europa. Segundo comentários dos entrevistados, os materiais importados custam em média 15% menos comparativamente aos nacionais. Os principais fatores responsáveis por esta realidade seriam o alto custo interno de commodities, como o aço, os custos logísticos, a alta tributação incidente, a taxa cambial e o custo de mão de obra. Estudo realizado pela ABIMAQ (2013) sinaliza uma diferença de 37% (em percentual da receita líquida de vendas) para o Brasil comparativamente à Alemanha, em 2012, em termos de custo para produção do mesmo equipamento, com a mesma estrutura operacional e física, sendo que neste caso a maior parte deste percentual estaria associada ao custo com insumos – cerca de 20 p.p. (pontos percentuais) dos 37 totais. O aço, insumo básico do setor, teve uma elevação de preço de cerca de 16% em 2013 no mercado local. Outras diferenças de custo significativas verificadas neste estudo foram o impacto dos juros sobre o capital de giro (6,5 p.p.), impostos não recuperáveis na cadeia produtiva (4,7 p.p.) e logística (3,2 p.p.). O “custo Brasil” é apontado (ver Capítulo 2) como um dos principais responsáveis pelo interesse das montadoras em importar os itens produtivos associados ao aerogerador. Ainda, esta falta de competitividade da indústria nacional contribui negativamente para que o Brasil se torne um hub exportador do setor, inviabilizando possíveis ganhos de escala das operações locais.

Sobre a falta de capacidade produtiva local de componentes e subcomponentes é possível afirmar que (ver detalhes no item 3.4 do Capítulo 3):

- hoje falta capacidade ou há capacidade limitada basicamente para flanges, tecidos de fibra, rolamentos e fundidos e usinados de grande porte e maior complexidade;
- já há capacidade nominal instalada para fabricação de pás e torres em quantidade bem acima da demanda prevista (aproximadamente 2 GW/ano);
- há montadoras de nacele instaladas ou em fase de instalação com capacidades nominais acima da demanda prevista;
- há fabricantes de diversos outros itens produtivos instaladas ou em processo de instalação.

Porém, a capacidade efetiva e em condições de atender a demanda depende de uma série de fatores como a realização de investimentos em máquinas e equipamentos e/ou ampliações de linhas produtivas e a homologação técnica dos produtos fabricados localmente pelas montadoras. A capacidade real é influenciada negativamente pela concentração de pedidos em determinados meses do ano (mais detalhes ver seção 4.4) e por dificuldades com contratação e retenção de mão de obra (especialmente nos estados do Nordeste). É preciso que se considere também que parte da capacidade existente é dedicada a algumas montadoras (ver item 3.4 do Capítulo 3 para mais detalhes). Há, por exemplo, fabricantes de torres e pás homologados
para apenas algumas montadoras. O Quadro 30 e o Quadro 31 apresentam a situação atual de fornecimento destes componentes.

<table>
<thead>
<tr>
<th>Tipos</th>
<th>Aço</th>
<th>Concreto</th>
<th>Híbrida</th>
<th>Trelíçada</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montadoras que utilizam</td>
<td>GE, Alstom, IMPSA, Suzlon, Gamesa, Vestas, WEG</td>
<td>IMPSA Acciona Suzlon WEG</td>
<td>Wobben</td>
<td>(em estudo por algumas montadoras)</td>
</tr>
<tr>
<td>Fabricantes locais de torres</td>
<td>Engebasa (BR) Gestamp (ES) Torestrbras (ES) Intecial (BR) Brasilisat (BR) ICEC-SCS (BR) Alstom (FR)</td>
<td>INNEO (ES) CTZ Eco Tower (BR) Eolicabrás/Serveng (BR) Cassol (BR)</td>
<td>Wobben (AL)*</td>
<td>Brametal (BR) (parceria com empresas alemãs Confredo e PEConcepts)</td>
</tr>
<tr>
<td>Capac. total (previsão para 2014)</td>
<td>1538 un.</td>
<td>410 un.</td>
<td>500 un.</td>
<td>N.D.</td>
</tr>
</tbody>
</table>

Quadro 30 – Montadoras e respectivos fabricantes de torres.

* A Wobben utiliza torres híbridas (parte inferior de concreto e superior de aço), fabricando a parte de concreto e subcontratando a parte de aço. BR=Brasil; ES=Espanha; FR=França; AL=Alemanha

<table>
<thead>
<tr>
<th>Fabricantes locais de pás</th>
<th>TECSIS</th>
<th>AERIS</th>
<th>WOBKEN</th>
<th>LM WIND POWER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Montadoras atendidas</td>
<td>GE GAMESA*</td>
<td>ACCIONA SUZLON*</td>
<td>WOBKEN*</td>
<td>IMPSA GAMESA*</td>
</tr>
<tr>
<td></td>
<td>ALSTOM</td>
<td>WEG**</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Capacidade total anual</td>
<td>6000 un.</td>
<td>600 un.</td>
<td>1500 un.</td>
<td>1000 un.</td>
</tr>
</tbody>
</table>

Quadro 31 – Fabricantes de Pás e respectivas montadoras atendidas.

* Montadoras atendidas em período anterior (linha da Suzlon desativada na Aeris e novos pedidos da IMPSA e Gamesa transferidos para a LM WIND POWER) // ** Projeto em fase final de desenvolvimento.
Outra questão importante a se considerar com relação à produção de componentes e subcomponentes é a dificuldade que os fabricantes destes itens têm para planejar e programar a produção e assim os investimentos necessários. Muitos fabricantes locais afirmam que a demanda de aerogeradores que vem sendo gerada nos leilões não está sendo repassada na mesma proporção para a cadeia produtiva local, mesmo com as ações do BNDES. Este aspecto dificulta a previsibilidade de demanda e a tomada de decisões relativas à realização de investimentos (aquisição de máquinas e equipamentos, ampliação das instalações...) e/ou para o estabelecimento de possíveis parcerias com fabricantes internacionais, as quais contribuiriam para maior maturidade dos processos fabris e, assim, para obtenção de ganhos de produtividade.

Em uma análise mais ampla, observa-se que, além das dificuldades relativas à cadeia produtiva do aerogerador, existem gargalos que impactam a competitividade dos projetos eólicos nos leilões de contratação e/ou sua operação. Há no País atualmente um grande volume de projetos de parques em diferentes estágios (prontos ou em desenvolvimento), que enfrentam problemas como falta de conexão à rede elétrica e/ou lentidão e atrasos na liberação de licenças ambientais. Atualmente, para que um projeto de parque eólico esteja apto a competir nos leilões, é necessário que haja a possibilidade de conexão ao sistema elétrico de modo a garantir o escoamento da energia gerada, além do licenciamento ambiental. No caso do licenciamento ambiental, antes do leilão, o projeto eólico necessita ter emitida uma licença prévia (LP) e posteriormente é exigida a licença de instalação (LI). Considerando a demora nas liberações, para sua maior segurança, alguns investidores preferem ter a LI já antes do leilão. As redes de transmissão nas regiões de maior potencial eólico são limitadas e sua expansão depende de licitações do governo. As licenças ambientais são de responsabilidade dos órgãos estaduais e, apesar de diferentes realidades regionais, o processo de liberação é considerado lento. O mesmo vale para as liberações do Instituto do Patrimônio Histórico e Artístico Nacional (IPHAN) – o licenciamento ambiental necessita da anuência do instituto.

Empresas produtoras de energia e desenvolvedores de projetos sugerem a criação de políticas mais apropriadas para a eólica, que deveria ter um tratamento diferenciado, apropriado a sua característica, já que tem baixo impacto ambiental. O Estado da Bahia é considerado por muitas empresas como bastante atraivo para projetos eólicos, justamente por ter, além do grande potencial eólico, políticas de emissão de licenciamentos ambientais e de instalação de fábrica mais favoráveis, que permitem maior agilidade no processo. Nas palavras de um dos produtores de energia no que tange à indústria eólica: “A Bahia enxergou a oportunidade e criou uma política desenvolvedora”.
4.3.3 ANÁLISE CRÍTICA SOBRE O REGIME ESPECIAL – REIDI E SEUS IMPACTOS EM TODA A CADEIA DE FORNECEDORES E FABRICANTES

O Regime Especial de Incentivos para o Desenvolvimento da Infraestrutura (REIDI) foi instituído em 2007 para desonerar do PIS e da Cofins as aquisições de produtos realizadas pelos investidores de obras de infraestrutura (PAC), sendo que o segmento de geração de energia eólica foi um dos beneficiários mais importantes.

Com o REIDI, os investidores habilitados, vencedores de licitações ou leilões de concessão, têm total isenção de cobrança de PIS/Cofins. Há também as empresas ditas co-habilitadas – companhias de construção civil por empreitada –, que têm isenção do recolhimento do PIS/Cofins incidente sobre a receita decorrente da venda de máquinas, instrumentos e equipamentos novos, materiais de construção e prestação de serviços para incorporação nas obras de infraestrutura beneficiadas. As empresas de bens de capital sob encomenda, fabricantes de aerogeradores e seus componentes, porém, não foram autorizadas a ser co-habilitadas aos projetos habilitados no regime tributário especial. Como estes fabricantes têm suas vendas concentradas geralmente apenas nos mercados de infraestrutura, ocorre que praticamente todas as vendas realizadas acabam gerando enorme acúmulo de créditos de PIS/Cofins.

Esta situação tornou-se um problema para os fornecedores e subfornecedores da cadeia local de bens da indústria eólica, uma vez que este acúmulo de créditos representa então um custo adicional. As empresas acabam embutindo este custo em seu preço, ocasionando uma perda significativa de competitividade dos produtos nacionais diante dos importados – no caso de produtos importados a desoneração é efetiva porque incide integralmente sobre o custo da importação.

O REIDI é visto na prática como um problema, tanto pelos investidores como pelos fabricantes dos bens. Entidades relacionadas ao setor como a ABINEE e a ABIMAQ estão solicitando a revisão do REIDI, pleiteando a sua extensão para toda a cadeia produtiva ou então a sua eliminação. Segundo os fabricantes, embora aparentemente seja uma contradição, a eliminação do benefício reduziria o preço dos componentes e do aerogerador.

Ainda segundo alguns fabricantes, outro desequilíbrio diz respeito ao ICMS. Há um decreto e um convênio9 de ICMS que permitem às montadoras de aerogeradores adquirir suas matérias-primas e componentes com o NCM 8503.00.90, que é isento de ICMS. Os fornecedores desses itens, ao comprar materiais no mercado local de forma a atender os requisitos do BNDES de conteúdo nacional, recebem a incidência do ICMS em 12%, 18%, etc. e vendem

9 Convênio 101/97, instituído em 1997 pelo Conselho Nacional de Política Fazendária (Confaz). O convênio isentou o pagamento do ICMS para o segmento de energia eólica no que se refere a operações com equipamentos e componentes para o aproveitamento da energia eólica, especialmente os aerogeradores e seus componentes. Esse convênio foi prorrogado diversas vezes e deve vigorar até dezembro de 2015.
para as montadoras os produtos acabados sob o NCM 8503.00.90 com 0% de ICMS, havendo novamente um acúmulo de créditos. Como os processos de recuperação de ICMS costumam ser bastante demorados, a tendência é o fabricante local novamente embutir o tributo da compra como custo e aumentar o preço de venda. De forma similar à questão do PIS/Cofins, alguns profissionais do setor defendem que o ICMS deveria ser estendido à cadeia ou então eliminado, de forma a efetivamente beneficiar o setor.

4.3.4 ANÁLISE CRÍTICA QUANTO À METODOLOGIA DE AQUISIÇÃO DE ENERGIA ELÉTRICA NO BRASIL

O desenvolvimento da energia eólica no Brasil iniciou-se por meio do Programa de Incentivo às Fontes Alternativas (PROINFA), instituído em 2002. O programa tinha por objetivo estimular a geração de eletricidade de fontes alternativas no curto e longo prazo. Na primeira fase, empresas independentes de geração tinham a oportunidade de assinar contratos de 15 anos para 1,1 GW de energia de cada uma das fontes alternativas (eólica, biomassa e PCHs). Para cada fonte havia um valor econômico específico definido para o pagamento da energia gerada (CNI, 2009), em um regime conhecido como *feed-in tariff*. A segunda fase do programa previa que em 20 anos 10% da matriz elétrica brasileira seria gerada a partir de fontes alternativas. Porém, em 2004, houve uma profunda reforma com a introdução do Novo Modelo do Setor Elétrico Brasileiro (Lei 10.762/2003 e Decreto 5.025/2004). Neste novo modelo, a comercialização da energia eólica se dá por meio de negociações abertas no Ambiente de Contratação Livre (ACL) ou mediante leilões de fontes alternativas ou leilões específicos para geração eólica no Ambiente de Contratação Regulada (ACR). No ACL só podem comprar energia os consumidores livres e as relações comerciais são livremente pactuadas e regidas por contratos que estabelecem prazos e volumes. No ACR é utilizado o critério de menor tarifa ao consumidor para a contratação de energia e somente podem participar as empresas distribuidoras de energia (toda a demanda de distribuidores deve ser contratada de empresas de geração) (PINTO JR, 2007).

A primeira etapa do leilão é o cadastro de interesse de compra das distribuidoras, mas este volume não é divulgado. A lógica do leilão brasileiro, que segue o sistema holandês, é de que quem está vendendo não enxerga o volume de compra, forçando uma baixa de preços. Quanto maior a demanda, maiores devem ser os preços de contratação, mas o ponto-chave para a definição do preço é a parcela correspondente ao aerogerador. Então, para uma redução dos preços de energia toda a cadeia produtiva deve ser estimulada.

10 O sistema de *feed-in* determina o preço mínimo que a concessionária deverá pagar pela energia elétrica gerada pelo produtor quando este conectar sua usina na rede. Esse incentivo pode ser também o valor total recebido pelo produtor incluindo subsídio e/ou taxas de reembolso ou o prêmio pago adicionalmente ao preço de mercado da energia (Revista BNDES, julho de 2013).
O modelo de leilões trouxe benefícios ao setor eólico, mas também algumas dificuldades. A realização de leilões regulares no período de 2009 a 2011 foi fundamental para o desenvolvimento da eólica e para a adesão dos empreendedores. A previsibilidade de demanda gerada a partir dos primeiros anos dos leilões, associada à oferta de crédito barato e às exigências de conteúdo local para este financiamento, resultaram em um processo de estruturação da cadeia eólica nacional. Em 2012, porém, uma redução de demanda, e consequentemente do preço de contratação, assustou os fabricantes e trouxe insegurança para o mercado. Em 2009 haviam sido contratados 1.837 MW, em 2010, 2.047 MW, e em 2011, 2.907 MW, enquanto que em 2012 foi realizado apenas um leilão (A-5) com contratação de 250 MW a cerca de R$ 90/kWh (valores como este são considerados geralmente muito baixos para a viabilidade econômica dos parques eólicos contratados).

A oscilação de demanda, especialmente a falta de continuidade no ritmo das contratações, é considerada por muitos atores da indústria eólica como um grande dificultador de um desenvolvimento maior da cadeia produtiva. Investimentos em instalações fabris e equipamentos foram postergados ou mesmo cancelados em função da incerteza quanto à constância de contratações em 2012. Para os desenvolvedores e fornecedores é muito importante que haja um horizonte claro para a realização dos investimentos.

Uma sugestão para minimização desta dificuldade é a “regulação”, ou melhor, organização e distribuição dos leilões. O leilão A-3 é adequado à eólica pelo prazo (comparativamente ao A-5), mas apenas ele é considerado insuficiente para o estabelecimento de uma demanda mínima anual de contratos de eólica. Isto porque o A-3 depende da demanda das distribuidoras, e esta, por sua vez, está associada ao crescimento de mercado e à estratégia de compra das distribuidoras.

Conforme sugerido por alguns entrevistados, uma solução então seria combinar leilão de reserva (LER) e A-3. Assim, um volume mínimo seria contratado no LER e o restante seria modulado pelo A-3, garantindo uma demanda mínima para os fabricantes. O A-5 é considerado por alguns investidores como de longo prazo para a eólica, pois imporia riscos associados ao preço do aerogerador. O custo do aerogerador é vinculado ao mercado internacional do aço e do cobre – insumos que dependem principalmente da demanda chinesa. Sendo assim, vender cinco anos à frente representa um risco grande (e desnecessário) que desestimula o investidor. Esta lógica de pelo menos dois leilões por ano, um de reserva com volume mínimo e um A-3 para modulação, poderia fazer parte de uma nova política do governo. De fato parece clara a necessidade de integração entre a política energética e a política industrial no país. No caso da fonte eólica, essa questão é muito evidente, uma vez que se trata de uma indústria ainda em formação.

Apesar de o ano de 2013 ter sido muito mais animador que 2012, com recorde de contratações – 4.710 MW, e com preços mais elevados (R$ 118,00 como média), o leilão A-3 realizado em novembro de 2013 foi marcado por uma forte disputa pelo fornecimento de aerogeradores. Por ter um prazo de entrega reduzido (25 meses e não 36 meses), uma vez que o início de suprimento...
de energia deve ocorrer em janeiro de 2016, a disponibilidade de máquinas credenciadas foi menor. Esse é mais um indicador da necessidade de integração entre a política energética e a industrial, passando, também, pelas questões de financiamento/conteúdo local.

Cabe ressaltar a importância do desenvolvimento do Mercado Livre (ML) que, conjugado com o leilão, pode dar uma perspectiva maior para os investidores e para a cadeia produtiva. A dificuldade do ML é que são contratos de venda de energia por um período curto, apenas cinco anos (pois as empresas compradoras não estão dispostas a assumir um preço de energia para períodos maiores), e o período do financiamento é bem superior (10 a 12 anos). Então não há garantias de que o investidor vai ter “lastro” para honrar o financiamento e, além disso, os bancos financeiros para o ML costumam ser bastante rigorosos quanto à aprovação dos financiamentos. Além do estabelecimento de políticas federais, com criação de legislação específica para este ambiente, políticas estaduais que favoreçam o desenvolvimento deste mercado eólico nos estados, com foco nas indústrias, podem contribuir para o crescimento desta alternativa de contratação de energia.

Outra questão importante associada aos leilões está relacionada ao prazo de entrega dos parques eólicos. Os vários projetos contratados em um dado leilão têm exatamente o mesmo prazo de início de operação. Caso o investidor conclua o parque antes do prazo, ele não pode antecipar o recebimento de seu contrato de venda – Power Purchase Agreement (PPA). Isto é, não há incentivo para prazos diferentes do estabelecido no leilão. Assim, toda a cadeia produtiva é acionada de forma conjunta pelos vários investidores, ocasionando um acúmulo de pedidos em alguns meses do ano. Esta concentração de pedidos pode resultar em gargalos de atendimento ou mesmo na incapacidade por parte dos fabricantes de atendimento de toda a demanda de aerogeradores e de seus componentes e subcomponentes.

4.3.5 ANÁLISE CRÍTICA QUANTO ÀS CARACTERÍSTICAS DA INDÚSTRIA NACIONAL PARA PRODUZIR BENS SERIADOS DE GRANDE PORTE EM FORJARIA, FUNDIÇÃO E USINAGEM COM PRECISÃO E QUALIDADE ELEVADA

Importantes componentes do aerogerador são as flanges das torres, o cubo do rotor, os rolamentos do passo e de giro, o eixo principal e os elementos estruturais da nacele e do sistema estator/rotor (em aerogeradores de acionamento direto). Esses itens de grande porte são fabricados por processos de forjaria, fundição e/ou usinagem de alta precisão e, em sua maioria, representam atualmente gargalos potenciais na cadeia produtiva da indústria eólica nacional.

Boa parte das montadoras que utiliza torres de aço cônicas exige o emprego de flanges forjadas em sua fabricação. Este tipo de flange ainda não é fabricada no Brasil, embora esteja prevista na metodologia do BNDES (a partir de julho de 2015). Potenciais fabricantes são, por
exemplo, a BARDELLA e a UNIFORJA, mas estas empresas ainda estão avaliando a realização dos investimentos necessários para esta operação.

A UNIFORJA, que é a maior fabricante de anéis/flanges/conexões de aço forjado de toda a Améria do Sul, já fornece anéis forjados e laminados para a fabricação de rolamentos. Porém, para a fabricação de flanges, que têm diâmetros maiores que os anéis para rolamento, são necessários investimentos na aquisição de fornos de forjaria e de tratamento térmico, de uma prensa e uma laminadora. Atualmente a empresa tem uma máquina para laminação de flanges e uma para laminação de anéis para rolamento e precisaria de uma laminadora adicional para flanges de cinco a seis metros. A capacidade atual para eólica com as duas laminadoras existentes é de 2.500 toneladas/mês (flanges e anéis).

A ROBRASA, empresa do grupo Thyssen Krupp, é atualmente a única fornecedora nacional de rolamentos do passo e de giro. Conforme citado acima, os rolamentos são fabricados a partir de anéis forjados e laminados, atualmente fornecidos localmente apenas pela UNIFORJA. Os anéis são então usinados pela ROBRASA (e posteriormente metalizados e pintados) para utilização na montagem dos rolamentos. A capacidade da ROBRASA para usinagem dos rolamentos já está no seu limite, representando também um potencial gargalo para a cadeia produtiva. Hoje a capacidade da ROBRASA é de 200 toneladas/mês (cerca de 100 rolamentos/mês), devendo chegar em 300 toneladas/mês (cerca de 150 rolamentos/mês) em novembro de 2014. Cada aerogerador utiliza três rolamentos de passo e diferentes tamanhos de aerogerador (tamanho/massa do rolamento), que representam diferenças significativas na capacidade de fabricação. Considerando-se um tamanho médio de aerogerador de 2 MW, a capacidade da ROBRASA para rolamentos do passo chegaria a 1,2 GW/ano. Para uma demanda de 2 GW/ano, atendendo aos requisitos do BNDES para 2015, a empresa necessita investir em maquinário adicional e/ou em melhoria da eficiência da utilização de sua capacidade de produção.

A BARDELLA, que tem um parque fabril montado para o atendimento de grandes estruturas metálicas, além de um foco importante na eólica, também planeja investimentos para o forjamento e laminação de anéis/flanges. No caso de anéis para rolamento, a BARDELLA teria capacidade de realizar um primeiro desbaste nos anéis, otimizando a ocupação das máquinas da ROBRASA com usinagem mais fina. A BARDELLA também fornece serviços de usinagem, metalização e pintura para o acabamento do cubo do rotor e tem atualmente capacidade para 300 cubos/ano.

A carcaça do cubo do rotor é obtida através dos processos de fundição, usinagem, metalização e pintura. Aparentemente existe sobrecapacidade de fornecimento local de carcaças de cubo. A ROMI, por exemplo, tem capacidade em fundição para 10.000 a 20.000 toneladas, o que atenderia a cerca de 500 aerogeradores/ano. Esta capacidade pode ainda ser aumentada a partir de investimentos na ampliação da fábrica e na aquisição de novos fornos. Outros dois fornecedores deste subcomponente são a VOITH e a BR METALS. A STEPAN é uma empresa que fornece serviços de usinagem para os cubos, com capacidade atual de 16 cubos/semana (aprox. 800 cubos/ano). Para 2015 um novo fornecedor de serviços de usinagem e pintura para
cubos deve iniciar operação, a ST METALS, com capacidade de 15 cubos/semana, inicialmente, chegando ao final deste ano a 26 cubos/semana. Há, porém, casos de montadoras que têm configurações mais complexas de cubo ou tamanhos de cubo maiores (para modelos de aerogerador de maior porte), encontrando limitações no atendimento local de suas demandas envolvendo os processos de fundição e usinagem.

Cabe ressaltar, também, a dificuldade logística associada ao fluxo produtivo do cubo. Com exceção da BR METALS, que é mais verticalizada (tem estrutura interna para fundição, usinagem, metalização e pintura), as empresas de fundição, em regra, precisam enviar os cubos (peças de 3 a 18 toneladas) até as empresas de usinagem e estas às empresas de pintura, por vezes localizadas em outras cidades, aumentando consideravelmente o tempo de atravessamento de produção do produto final. Sobre a usinagem de bens seriados de grande porte vale, ainda destacar que as empresas instaladas no País têm capacidade para produzir com precisão e qualidade elevada, mas não na produtividade desejada. Os recursos existentes em termos de maquinário não permitem o alcance de níveis de produtividade similares aos de fábricas na Europa. As montadoras, inclusive, optam algumas vezes por adaptar o projeto destes componentes às condições de máquinas locais, de forma a facilitar o processo produtivo e assim obter maior produtividade.

4.3.6 ANÁLISE CRÍTICA QUANTO AO POTENCIAL DESENVOLVIMENTO DE TECNOLOGIAS NACIONAIS PARA OS DIVERSOS SEGMENTOS DA CADEIA PRODUTIVA DA INDÚSTRIA EÓLICA

Como visto, o Brasil vem evoluindo seu modelo industrial do setor eólico. Atualmente são feitas no País a montagem do aerogerador e a fabricação de diversos componentes (torres, pás, subcomponentes do cubo e da nacele), com redução do número de itens importados comparativamente a anos anteriores. Cabe salientar, porém, que o avanço no conhecimento local não segue este mesmo ritmo. O conhecimento que está mais difundido no País abrange principalmente a tecnologia de processamento dos bens: a montagem dos aerogeradores, os processos de fabricação de torres de aço (corte, dobra, solda e pintura) e de concreto (concretagem e pré-moldagem) e os processos de fabricação de grandes componentes (caldeiraria, fundição, forja e usinagem). O conhecimento específico para o desenvolvimento do projeto da maior parte destes componentes ainda é pequeno e, dado o potencial de geração de tecnologia no País, poderia ser consideravelmente incrementado.

A maior parte das montadoras em atividade no País é formada por empresas multinacionais que têm seus centros de pesquisa no exterior. Essas empresas geralmente subcontratam fabricantes locais para fornecimento de serviços de manufatura, ou fabricação dos itens, conforme seus projetos próprios. Os modelos dos aerogeradores e componentes vendidos no Brasil fazem
parte do portfólio mundial dessas empresas, que normalmente utiliza a "combinação" de alturas de torres, tamanho do rotor e potência mais adequada às características locais. Isto é, não são desenvolvidos projetos para a especificidade do mercado brasileiro. A evolução tecnológica das máquinas segue as tendências mundiais e visam o atendimento às necessidades dos principais mercados globais.

Os esforços mundiais em termos de tecnologia de aerogeradores têm se concentrado na busca pela maximização da energia gerada. Neste sentido o foco é no desenvolvimento de máquinas mais altas, com rotores de maior diâmetro e potências mais elevadas. Os equipamentos de maiores dimensões tendem a ser mais rentáveis economicamente. Para este aspecto, contribuem também o refinamento dos projetos e dos processos produtivos com vistas a reduções de custos de materiais e a maior eficiência e confiabilidade do aerogerador e seus componentes. As inovações na área têm focado, principalmente, o emprego de materiais mais leves e resistentes, o desenvolvimento de sistemas de controle integrados, de torres “ultra-altas”, torres de concreto, trem de acionamento híbrido de média velocidade (integrando caixa de multiplicadora e gerador), além da padronização e modularização de componentes para ganhos de escala.

No Brasil, os ventos são de excelente qualidade e consistência, com características diferentes das condições de ventos europeias e norte-americanas (não se encaixam no modelo IEC – classes I, II, III). Na região Nordeste do Brasil, onde se concentra grande potencial eólico, os ventos são de elevada constância direcional, de baixos níveis de turbulência e com pequena dispersão nas ocorrências de velocidade de vento. Na Europa, em países como Alemanha e Espanha, e nos Estados Unidos, as condições são em geral opostas (SILVA, 2003). Assim, a busca por maior desempenho e menores custos, fundamental considerando-se o mecanismo competitivo de contratação em vigor (leilões), pode ser fortemente influenciada pelo desenvolvimento de projetos especificamente voltados às condições locais. Por exemplo, podem ser desenvolvidos perfis aerodinâmicos que maximizem a produção de energia nas faixas de velocidade típicas do Nordeste. Outra possibilidade é um aumento do comprimento das pás sem que isso resulte em carregamentos críticos, em geral inviáveis nas condições de vento europeias (SILVA, 2003). Esta é uma grande oportunidade que se apresenta ao mercado brasileiro, especialmente às empresas de base local, pois, como comentado anteriormente, as empresas estrangeiras dificilmente se dedicarão a atender essas condições objetivas.

As montadoras brasileiras ou com base de desenvolvimento no País são respectivamente a WEG e a IMPSA. Essas empresas, entretanto, estão ainda em um estágio inicial de desenvolvimento tecnológico. A WEG está recém entrando no mercado, com utilização de tecnologia da americana Northern Power Systems, obtida através de um acordo tecnológico que prevê a cooperação para oferta de aerogeradores no mercado sul-americano. A empresa, em parceria com a Tractebel, já está investindo no desenvolvimento de um aerogerador próprio para as condições de vento nacionais (incluindo o desenvolvimento da torre e das pás), tendo para tanto contratado consultores estrangeiros para viabilizar o projeto em um período de quatro anos. A IMPSA, empresa de origem argentina, que iniciou o fornecimento de aerogeradores
através do licenciamento da tecnologia da Vensys alemã, já bastante experiente no mercado brasileiro, está iniciando o fornecimento de aerogeradores com tecnologia própria “Unipower”. A empresa tem vários projetos em andamento dentro do programa Inova Energia, como o desenvolvimento de aerogeradores de 3,5 MW, também com foco nas condições de vento brasileiras, torres maiores que 120 m e pás maiores que 60 m. Importante ressaltar que tanto a WEG como a IMPSA utilizam a configuração direct-drive – acionamento direto -, considerada como mais tecnologicamente evoluída comparativamente às configurações com caixa de engrenagem (apesar de ambas apresentarem vantagens e desvantagens, como apresentado no Capítulo2 – Relatório dos itens que compõem a cadeia produtiva de bens e serviços).

Outras empresas brasileiras com potencialidade para o desenvolvimento tecnológico são as fabricantes de pás TECSIS e AERIS. Atualmente essas empresas não desenvolvem projetos próprios, se dedicando a produzir pás conforme o projeto e especificações fornecidos pelas montadoras. Desta forma, ficam limitadas quanto à escolha de materiais que podem ser utilizados. Cabe salientar que o design da pá tem significativo impacto no custo do aerogerador e influencia no seu desempenho, oferecendo espaço relevante para inovações voltadas ao melhor aproveitamento dos ventos. Essas empresas têm interesse em desenvolver ou adquirir tecnologia para o desenvolvimento de projetos próprios das pás, necessitando, entretanto, de infraestrutura local para realização de testes e certificações.

As torres de aço, embora sejam componentes tecnologicamente menos sofisticados, são produzidas localmente seguindo os projetos das montadoras. As torres de concreto, porém, geralmente não têm essa limitação, tornando-se desta maneira uma oportunidade uma oportunidade talvez mais acessível à indústria nacional. As torres de concreto acima de 120 metros tendem a ser mais interessantes que as de aço e boa parte da tecnologia envolvida em sua fabricação é conhecida por diversos fabricantes locais da área de concreto pré-moldado.

No caso de grandes fundidos, usinados, forjados e laminados, há no País uma cadeia metalmecânica forte, carecendo, porém, de maquinários de grande porte e precisão para realização de alguns processos e atendimento de demandas mais elevadas. A tecnologia para fabricação de vários destes itens está associada geralmente ao maquinário necessário.

Há diversos itens que compõem o cubo do rotor e a nacele com interesse e potencialidade para desenvolvimento local, principalmente em função das regras de conteúdo local do BNDES para financiamento. Sistemas de controle, sistemas de passo e giro, sensores, anemômetros, imãs permanentes, caixa multiplicadora e rolamentos são exemplos de subcomponentes de alta tecnologia nos quais há forte dependência de empresas estrangeiras. Vários desses itens requerem conhecimento em tecnologia microeletrônica e automação, ainda pouco evoluída no País.
5. RELATÓRIO DO MAPEAMENTO DOS APLs E POLOS INDUSTRIAIS

5.1 LOCALIZAÇÃO ESPACIAL DAS MONTADORAS DE AEROGERADORES (NACELES E CUBOS)

As montadoras de aerogeradores com unidades no País e suas respectivas localizações e capacidades são apresentadas no Quadro 32. Conforme comentado anteriormente, a atividade dessas empresas realizadas nas localidades indicadas está associada à montagem da nacele e do cubo do rotor, pois a integração total do aerogerador acontece diretamente no parque eólico.

<table>
<thead>
<tr>
<th>Montadoras de aerogeradores</th>
<th>Localização</th>
<th>UF</th>
<th>Capacidade anual (prevista)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPSA</td>
<td>Suape</td>
<td>PE</td>
<td>400 aerogeradores, expansível para 500</td>
</tr>
<tr>
<td>IMPSA</td>
<td>Guaíba</td>
<td>RS</td>
<td>100 aerogeradores, expansível para 200</td>
</tr>
<tr>
<td>WEG</td>
<td>Jaraguá do Sul</td>
<td>SC</td>
<td>100 MW, chegando a 200 MW em ago/14</td>
</tr>
<tr>
<td>Wobben</td>
<td>Sorocaba</td>
<td>SP</td>
<td>500 MW</td>
</tr>
<tr>
<td>GE</td>
<td>Campinas</td>
<td>SP</td>
<td>500 MW</td>
</tr>
<tr>
<td>Alstom</td>
<td>Camaçari</td>
<td>BA</td>
<td>400 MW</td>
</tr>
<tr>
<td>Gamesa</td>
<td>Camaçari</td>
<td>BA</td>
<td>400 MW</td>
</tr>
<tr>
<td>Acciona</td>
<td>Simões Filho</td>
<td>BA</td>
<td>135 cubos e 100 naceles</td>
</tr>
<tr>
<td>Vestas*</td>
<td>A definir</td>
<td>A definir</td>
<td>400 MW previstos para final de 2015</td>
</tr>
</tbody>
</table>

* A Vestas recentemente assinou carta de intenções com o BNDES.
Na Figura 23 pode ser visualizada a representação geográfica da localização das unidades de montagem de naceles e cubos instaladas ou em processo de instalação no País. A título de ilustração, a Figura 24 apresenta uma visão da unidade da Alstom, em Camaçari, para montagem de cubos e naceles.
Figura 25 – Localização das montadoras de aerogeradores e dos principais parques de geração eólica instalados e a instalar no País.

O Quadro 33 e o Quadro 34 apresentam respectivamente a localização dos principais fornecedores de subcomponentes para a montagem dos cubos e naceles. A Figura 26 e a Figura 27 trazem a representação geográfica destas cadeias produtivas.

<table>
<thead>
<tr>
<th>Subcomponentes do cubo</th>
<th>Fabricante</th>
<th>Localização</th>
<th>UF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carcaça do cubo</td>
<td>Romi</td>
<td>Sta. Bárbara do Oeste</td>
<td>SP</td>
</tr>
<tr>
<td></td>
<td>BrMetals</td>
<td>Matozinho</td>
<td>MG</td>
</tr>
<tr>
<td></td>
<td>Voith</td>
<td>São Paulo</td>
<td>SP</td>
</tr>
<tr>
<td></td>
<td>Stepan*</td>
<td>Campinas</td>
<td>SP</td>
</tr>
<tr>
<td>Carenagem do cubo/cone</td>
<td>Ancel</td>
<td>Rio Claro</td>
<td>SP</td>
</tr>
<tr>
<td></td>
<td>Atlanta</td>
<td>Sorocaba</td>
<td>SP</td>
</tr>
<tr>
<td></td>
<td>Molde</td>
<td>São José dos Campos</td>
<td>SP</td>
</tr>
<tr>
<td></td>
<td>MVC</td>
<td>Curitiba</td>
<td>PR</td>
</tr>
<tr>
<td>Rolamentos do passo (pitch)</td>
<td>Robrasa</td>
<td>Diadema</td>
<td>SP</td>
</tr>
<tr>
<td>Placas (Torque e Stiffening Plates)</td>
<td>Bardella</td>
<td>Guarulhos</td>
<td>SP</td>
</tr>
</tbody>
</table>
Quadro 33 – Localização dos principais fornecedores de subcomponentes para a montagem dos cubos // Fornecedor de serviços de usinagem para as empresas fornecedoras das carcaças de cubo.

Figura 26 – Representação geográfica da cadeia produtiva de cubos
<table>
<thead>
<tr>
<th>Subcomponentes da nacele</th>
<th>Fabricante</th>
<th>Localização</th>
<th>UF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estrutura da nacele</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>BR Metals</td>
<td>Matozinho</td>
<td>MG</td>
</tr>
<tr>
<td></td>
<td>Romi</td>
<td>Sta. Bárbara do Oeste</td>
<td>SP</td>
</tr>
<tr>
<td></td>
<td>Voith</td>
<td>São Paulo</td>
<td>SP</td>
</tr>
<tr>
<td></td>
<td>Bardella</td>
<td>Guarulhos</td>
<td>SP</td>
</tr>
<tr>
<td>Carenagem da nacele</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E. M. Estaleiro (Phoenix)</td>
<td>Maceió</td>
<td>AL</td>
</tr>
<tr>
<td></td>
<td>Ancel</td>
<td>Rio Claro</td>
<td>SP</td>
</tr>
<tr>
<td></td>
<td>Atlanta</td>
<td>Sorocaba</td>
<td>SP</td>
</tr>
<tr>
<td></td>
<td>Molde</td>
<td>São José dos Campos</td>
<td>SP</td>
</tr>
<tr>
<td></td>
<td>MVC</td>
<td>Curitiba</td>
<td>PR</td>
</tr>
<tr>
<td>Acessórios</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Frata</td>
<td>São Paulo</td>
<td>SP</td>
</tr>
<tr>
<td></td>
<td>Debetec</td>
<td>São Paulo</td>
<td>SP</td>
</tr>
<tr>
<td></td>
<td>Mobil</td>
<td>Rio de Janeiro</td>
<td>RJ</td>
</tr>
<tr>
<td></td>
<td>Klüber</td>
<td>Barueri</td>
<td>SP</td>
</tr>
<tr>
<td></td>
<td>Fuchs do Brasil</td>
<td>Barueri</td>
<td>SP</td>
</tr>
<tr>
<td>Sistema de YAW</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bonfiglioli</td>
<td>CD em São Bernardo</td>
<td>SP</td>
</tr>
<tr>
<td></td>
<td>WEG</td>
<td>Jaraguá do Sul</td>
<td>SC</td>
</tr>
<tr>
<td></td>
<td>SEW</td>
<td>Indaiatuba</td>
<td>SP</td>
</tr>
<tr>
<td></td>
<td>ICSA</td>
<td>Belo Horizonte</td>
<td>MG</td>
</tr>
<tr>
<td>Conversor/Inversor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ingeteam</td>
<td>Valinhos</td>
<td>SP</td>
</tr>
<tr>
<td></td>
<td>Woodward</td>
<td>Campinas</td>
<td>SP</td>
</tr>
<tr>
<td></td>
<td>ICSA</td>
<td>Belo Horizonte</td>
<td>MG</td>
</tr>
<tr>
<td>Transformador (principal e auxiliar)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comtrafo</td>
<td>Cornélio Procópio</td>
<td>PR</td>
</tr>
<tr>
<td></td>
<td>ABB</td>
<td>Blumenau</td>
<td>SC</td>
</tr>
<tr>
<td></td>
<td>Blutrafos</td>
<td>Blumenau</td>
<td>SC</td>
</tr>
<tr>
<td></td>
<td>WEG</td>
<td>Jaraguá do Sul</td>
<td>SC</td>
</tr>
<tr>
<td></td>
<td>Siemens</td>
<td>Jundiaí</td>
<td>SP</td>
</tr>
<tr>
<td>Sistema de freios</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vulkan</td>
<td>Itatiba</td>
<td>SP</td>
</tr>
<tr>
<td></td>
<td>TecTor</td>
<td>Santo André</td>
<td>SP</td>
</tr>
<tr>
<td>Sistema de travamento do rotor</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Atlanta</td>
<td>Sorocaba</td>
<td>SP</td>
</tr>
<tr>
<td>Panel de proteção elétrica</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>ICSA</td>
<td>Belo Horizonte</td>
<td>MG</td>
</tr>
<tr>
<td></td>
<td>ABB</td>
<td>Blumenau</td>
<td>SC</td>
</tr>
<tr>
<td></td>
<td>Blutrafos</td>
<td>Blumenau</td>
<td>SC</td>
</tr>
<tr>
<td></td>
<td>Ormazabal</td>
<td>São Sebastião do Passé</td>
<td>BA</td>
</tr>
<tr>
<td>Cabos/barramento</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Phelps Dodge</td>
<td>Poços de Caldas</td>
<td>SP</td>
</tr>
<tr>
<td></td>
<td>Prysmian</td>
<td>Santo André</td>
<td>SP</td>
</tr>
<tr>
<td></td>
<td>Nexans</td>
<td>Rio de Janeiro</td>
<td>RJ</td>
</tr>
<tr>
<td>Subcomponentes da nacele</td>
<td>Fabricante</td>
<td>Localização</td>
<td>UF</td>
</tr>
<tr>
<td>--------------------------</td>
<td>------------------</td>
<td>----------------------</td>
<td>-----</td>
</tr>
<tr>
<td>Unidade hidráulica</td>
<td>Rexroth Bosch</td>
<td>Atibaia</td>
<td>SP</td>
</tr>
<tr>
<td></td>
<td>Group</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Hensaflex</td>
<td>Curitiba</td>
<td>PR</td>
</tr>
<tr>
<td></td>
<td>Hine</td>
<td>Indaiatuba</td>
<td>SP</td>
</tr>
<tr>
<td>Sistema de refrigeração da nacele</td>
<td>Apema</td>
<td>São Bernardo dos Campos</td>
<td>SP</td>
</tr>
<tr>
<td></td>
<td>Gea</td>
<td>Franco da Rocha</td>
<td>SP</td>
</tr>
<tr>
<td></td>
<td>ABB*</td>
<td>Sorocaba</td>
<td>SP</td>
</tr>
<tr>
<td>Elementos estruturais do rotor e estator</td>
<td>Bardella</td>
<td>Guarulhos Sorocaba</td>
<td>SP</td>
</tr>
<tr>
<td></td>
<td>BR Metals</td>
<td>Matozinho</td>
<td>MG</td>
</tr>
<tr>
<td></td>
<td>Romi</td>
<td>Sta. Bárbara do Oeste</td>
<td>SP</td>
</tr>
<tr>
<td></td>
<td>Voith</td>
<td>São Paulo</td>
<td>SP</td>
</tr>
<tr>
<td>Resina de impregnação</td>
<td>WEG</td>
<td>Jaraguá do Sul</td>
<td>SC</td>
</tr>
<tr>
<td></td>
<td>Elantas</td>
<td>Cerciulho</td>
<td>SP</td>
</tr>
<tr>
<td>Núcleo magnético</td>
<td>Tessin</td>
<td>Suzano</td>
<td>SP</td>
</tr>
<tr>
<td>Bobinas</td>
<td>EFACEC</td>
<td>Lauro de Freitas</td>
<td>BA</td>
</tr>
<tr>
<td></td>
<td>PPE</td>
<td>Cerciulho</td>
<td>SP</td>
</tr>
</tbody>
</table>

Quadro 34 – Localização dos principais fornecedores de subcomponentes para a montagem das naceles
Conforme pode ser observado, há uma grande concentração de fornecedores de subcomponentes na região sul-sudeste, em especial no Estado de São Paulo. Neste sentido, a GE e a Wobben têm a vantagem de estar mais próximas desta cadeia produtiva.

5.2 LOCALIZAÇÃO ESPACIAL DOS FABRICANTES DE TORRES

O conjunto dos fabricantes de torres com fábricas no País e suas respectivas localizações e capacidades são apresentadas no Quadro 35.

<table>
<thead>
<tr>
<th>Fabricante de torres</th>
<th>Tipo</th>
<th>Localização</th>
<th>UF</th>
<th>Capacidade anual (previsão)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gestamp</td>
<td>Aço</td>
<td>Cabo de Santo Agostinho</td>
<td>PE</td>
<td>450</td>
</tr>
<tr>
<td>Engebasa</td>
<td>Aço</td>
<td>Cubatão</td>
<td>SP</td>
<td>168</td>
</tr>
<tr>
<td>Engebasa</td>
<td>Aço</td>
<td>Guaíba</td>
<td>RS</td>
<td>(300)</td>
</tr>
<tr>
<td>Torrebras (Windar)</td>
<td>Aço</td>
<td>Camaçari</td>
<td>BA</td>
<td>220</td>
</tr>
<tr>
<td>Intecnial</td>
<td>Aço</td>
<td>Erechim</td>
<td>RS</td>
<td>100</td>
</tr>
<tr>
<td>Fabricante de torres</td>
<td>Tipo</td>
<td>Localização</td>
<td>UF</td>
<td>Capacidade anual (previsão)</td>
</tr>
<tr>
<td>------------------------------</td>
<td>---------</td>
<td>-------------------</td>
<td>-----</td>
<td>-----------------------------</td>
</tr>
<tr>
<td>Tecnoaq</td>
<td>Aço</td>
<td>Aquiraz</td>
<td>CE</td>
<td>(100)</td>
</tr>
<tr>
<td>Brasilsat</td>
<td>Aço</td>
<td>Curitiba</td>
<td>PR</td>
<td>50</td>
</tr>
<tr>
<td>ICEC-SCS</td>
<td>Aço</td>
<td>Mirassol</td>
<td>SP</td>
<td>100</td>
</tr>
<tr>
<td>Alstom</td>
<td>Aço</td>
<td>Canoas</td>
<td>RS</td>
<td>120</td>
</tr>
<tr>
<td>Alstom</td>
<td>Aço</td>
<td>Jacobina</td>
<td>BA</td>
<td>(150)</td>
</tr>
<tr>
<td>Ernesto Woebcke</td>
<td>Concreto</td>
<td>Gravataí</td>
<td>RS</td>
<td>(ver total Wobben)</td>
</tr>
<tr>
<td>Wobben</td>
<td>Concreto</td>
<td>Parazinho</td>
<td>RN</td>
<td>500</td>
</tr>
<tr>
<td>CTZ Eolic Tower</td>
<td>Concreto</td>
<td>Fortaleza</td>
<td>CE</td>
<td>120</td>
</tr>
<tr>
<td>Inneo</td>
<td>Concreto</td>
<td>Trairi Casa Nova</td>
<td>BA</td>
<td>250</td>
</tr>
<tr>
<td>Eolicabras/Grupo Serveng</td>
<td>Concreto</td>
<td>São Paulo (sede)</td>
<td>SP</td>
<td>40 a 50</td>
</tr>
</tbody>
</table>

Quadro 35 – Fabricantes de torres com fábricas no Brasil por tipo, com localizações e capacidades

Na Figura 28 pode ser visualizada a representação geográfica da localização das fábricas de torres de aço e de concreto instaladas ou em processo de instalação no Brasil.

Figura 28 – Localização das fábricas de torres instaladas ou em processo de instalação no Brasil
O Quadro 36 e o Quadro 37 apresentam respectivamente a localização dos principais fornecedores de subcomponentes para a fabricação de torres de aço e de concreto. A Figura 29 e a Figura 30 trazem a representação geográfica destas cadeias produtivas.

<table>
<thead>
<tr>
<th>Subcomponentes torre de aço</th>
<th>Fabricante</th>
<th>Localização</th>
<th>UF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chapas de aço laminado</td>
<td>Usiminas</td>
<td>Ipatinga</td>
<td>MG</td>
</tr>
<tr>
<td>Flanges</td>
<td>Uniforja*</td>
<td>Diadema</td>
<td>SP</td>
</tr>
<tr>
<td></td>
<td>Brasil Iraeta</td>
<td>Suape - Cabo de Santo Agostinho</td>
<td>PE</td>
</tr>
<tr>
<td></td>
<td>Bardella*</td>
<td>Guarulhos</td>
<td>SP</td>
</tr>
<tr>
<td>Fixadores</td>
<td>Friedberg</td>
<td>Monte Mor</td>
<td>SP</td>
</tr>
<tr>
<td></td>
<td>Ciser</td>
<td>Joinville</td>
<td>SC</td>
</tr>
<tr>
<td></td>
<td>Industrial Rex</td>
<td>Braço do Trombudo</td>
<td>SC</td>
</tr>
<tr>
<td>Portas</td>
<td>Alus</td>
<td>Sorocaba</td>
<td>SP</td>
</tr>
<tr>
<td></td>
<td>Brasil Iraeta</td>
<td>Suape - Cabo de Santo Agostinho</td>
<td>PE</td>
</tr>
<tr>
<td>Escotilhas</td>
<td>Atlanta</td>
<td>Sorocaba</td>
<td>SP</td>
</tr>
<tr>
<td>Tintas</td>
<td>International (Akzo Nobel)</td>
<td>São Gonçalo</td>
<td>RJ</td>
</tr>
<tr>
<td></td>
<td>WEG Tintas</td>
<td>Jaraguá do Sul</td>
<td>SC</td>
</tr>
<tr>
<td></td>
<td>Renner Coatings</td>
<td>Curitiba</td>
<td>PR</td>
</tr>
<tr>
<td>Internos</td>
<td>Atlanta</td>
<td>Sorocaba</td>
<td>SP</td>
</tr>
<tr>
<td></td>
<td>Halo</td>
<td>Jaguariúna</td>
<td>SP</td>
</tr>
<tr>
<td></td>
<td>Kathrein</td>
<td>São Paulo</td>
<td>SP</td>
</tr>
<tr>
<td></td>
<td>Avanti</td>
<td>Fortaleza</td>
<td>CE</td>
</tr>
<tr>
<td></td>
<td>Baram</td>
<td>Sapucaia do Sul</td>
<td>RS</td>
</tr>
<tr>
<td></td>
<td>Halo</td>
<td>Ver acima</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Montarte</td>
<td>Santa Isabel</td>
<td>SP</td>
</tr>
<tr>
<td></td>
<td>Prysmian</td>
<td>Sorocaba</td>
<td>SP</td>
</tr>
<tr>
<td></td>
<td>Phelps Dodge</td>
<td>Poços de Caldas</td>
<td>MG</td>
</tr>
<tr>
<td></td>
<td>Nexans</td>
<td>Rio de Janeiro</td>
<td>RJ</td>
</tr>
</tbody>
</table>

Quadro 36 – Localização dos principais fornecedores de subcomponentes para torres de aço // * Investimentos ainda em fase de estudo.
Figura 29 – Representação geográfica da cadeia produtiva de torres de aço
<table>
<thead>
<tr>
<th>Subcomponentes torre de concreto</th>
<th>Fabricante</th>
<th>Localização</th>
<th>UF</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insertos metálicos</td>
<td>Tensacciai</td>
<td>São Paulo</td>
<td>SP</td>
</tr>
<tr>
<td>Cabos de aço de protensão</td>
<td>Belgo</td>
<td>Piracicaba</td>
<td>SP</td>
</tr>
<tr>
<td></td>
<td>PretendidosDYWIDAG</td>
<td>Guarulhos</td>
<td>SP</td>
</tr>
<tr>
<td>Aditivos para concreto e adesivos (montagem e reparo de pré-moldados)</td>
<td>MC-Bauchemie Brasil</td>
<td>Vargem Grande Paulista</td>
<td>SP</td>
</tr>
<tr>
<td>Internos</td>
<td>Atlanta</td>
<td>Sorocaba</td>
<td>SP</td>
</tr>
<tr>
<td></td>
<td>Hailo</td>
<td>Jaguariúna</td>
<td>SP</td>
</tr>
<tr>
<td></td>
<td>Kathrein</td>
<td>São Paulo</td>
<td>SP</td>
</tr>
<tr>
<td></td>
<td>Avanti</td>
<td>Fortaleza</td>
<td>CE</td>
</tr>
<tr>
<td></td>
<td>Baram</td>
<td>Sapucaia do Sul</td>
<td>RS</td>
</tr>
<tr>
<td></td>
<td>Hailo</td>
<td>Ver acima</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Montarte</td>
<td>Santa Isabel</td>
<td>SP</td>
</tr>
<tr>
<td></td>
<td>Prysmian</td>
<td>Sorocaba</td>
<td>SP</td>
</tr>
<tr>
<td></td>
<td>Phelps Dodge</td>
<td>Poços de Caldas</td>
<td>MG</td>
</tr>
<tr>
<td></td>
<td>Nexans</td>
<td>Rio de Janeiro</td>
<td>RJ</td>
</tr>
</tbody>
</table>

Quadro 37 – Localização dos principais fornecedores de subcomponentes para torres de concreto
Como pode ser verificado, a cadeia produtiva de subcomponentes e itens para atendimento aos fabricantes de torres, de aço ou de concreto, encontra-se mais concentrada em São Paulo.

5.3 LOCALIZAÇÃO ESPACIAL DOS FABRICANTES DE PÁS

O conjunto dos fabricantes de pás com fábricas no País e suas respectivas localizações e capacidades são apresentadas no Quadro 38.
Fabricantes de pás eólicas com fábrica no Brasil, com localizações e capacidades

<table>
<thead>
<tr>
<th>Fabricante de pás</th>
<th>Localização</th>
<th>UF</th>
<th>Capacidade anual (unidades)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tecsis</td>
<td>Sorocaba</td>
<td>SP</td>
<td>6000</td>
</tr>
<tr>
<td>Wobben</td>
<td>Sorocaba</td>
<td>SP</td>
<td>1500 (total)</td>
</tr>
<tr>
<td>Wobben</td>
<td>Pecém</td>
<td>CE</td>
<td></td>
</tr>
<tr>
<td>Aeris</td>
<td>Pecém</td>
<td>CE</td>
<td>600</td>
</tr>
<tr>
<td>LM Wind Power</td>
<td>Suape</td>
<td>PE</td>
<td>1000</td>
</tr>
</tbody>
</table>

Na Figura 31 pode ser visualizada a representação geográfica da localização das fábricas de pás instaladas no Brasil.

Figura 31 – Localização das fábricas de pás instaladas no Brasil

O Quadro 39 apresenta a localização dos principais fornecedores de insumos e itens para a fabricação de pás eólicas. A Figura 32 traz a representação geográfica desta cadeia produtiva.
Quadro 39 – Localização dos principais fornecedores de insumos e itens para a fabricação das pás

Como pode ser observado, a cadeia produtiva para abastecimento dos fabricantes de pás está concentrada em São Paulo.
5.4 ANÁLISES E CONSIDERAÇÕES SOBRE POLOS PRODUTIVOS E APLS

O desenvolvimento da indústria eólica no Brasil é um fenômeno recente. Somente a partir de 2009, com o início das contratações por meio de leilões, teve início um processo mais consistente de desenvolvimento de projetos eólicos, instalação de parques e estruturação de uma cadeia produtiva de bens e serviços. Diversos fornecedores mundiais de aerogeradores de grande porte têm sido atraídos para o País. A instalação de unidades de montagem de aerogeradores no Brasil e a fabricação local de componentes e subcomponentes são especialmente motivadas pelo acesso ao financiamento do BNDES/FINAME para compra de máquinas – aerogeradores, que exige um mínimo de conteúdo local. Desta forma, o Brasil está evoluindo o modelo industrial do setor, com montagem local do aerogerador, fabricação local de diversos componentes, tais como torres, pás, subcomponentes do cubo e da nacele, e importação de um número cada vez menor de itens.

Entretanto, cabe considerar que a estruturação de uma cadeia produtiva com as diversas especificidades da indústria eólica não acontece em pouco tempo. O desenvolvimento de uma cadeia de fornecimento consistente na Europa, por exemplo, levou pelo menos sete anos. No Brasil, após cerca de quatro anos de contratações regulares de energia, a capacidade nominal da indústria nacional já é superior a 1.500 aerogeradores/ano, mas ainda há gargalos a solucionar e oportunidades de fornecimento local a concretizar (ver Capítulo 3 e Capítulo 4). Neste contexto, são apresentadas a seguir análises sobre a formação de arranjos produtivos da indústria eólica no País e sobre os fatores logísticos associados.

5.4.1 IDENTIFICAÇÃO DOS POLOS PRODUTIVOS

Analisando-se a Figura 33 pode-se verificar a existência de dois grandes polos produtivos para grandes componentes: um na região Nordeste, envolvendo os estados da Bahia, Pernambuco, Ceará e Rio Grande do Norte; e outro no Sudeste e Sul, envolvendo os estados de São Paulo, Rio Grande do sul, Santa Catarina e Paraná.
Conforme comentado anteriormente, a escolha da localidade para instalação das atuais fábricas de nacele e cubo seguiu diferentes motivações e, muitas vezes, mais de uma motivação ao mesmo tempo:

a. Proximidade aos parques eólicos e condições de infraestrutura: dada a extensão territorial brasileira e a concentração dos parques/potencial eólico no Nordeste e no Rio Grande do Sul, montadoras como IMPSA, GAMESA, ALSTOM e ACCIONA procuraram ter suas unidades de cubo e nacele em locais próximos destas áreas, visando reduzir custos logísticos para a entrega destes componentes, considerando também as condições de infraestrutura relativas a portos e rodovias, que têm significativo impacto econômico, além de algum tipo de apoio ou incentivo oferecido pelos governos estaduais.

b. Proximidade da cadeia produtiva: a WOBLEN foi a primeira montadora a se instalar na América do Sul e sua estratégia de localização naquele momento foi a de ficar próxima da cadeia de fornecimento existente e potencial.

A questão logística é muito importante para as fábricas de pás, especialmente a proximidade aos portos. As grandes dimensões das pás, que chegam hoje a 60 metros de comprimento, impõem uma criticidade elevada ao seu transporte, sendo o meio marítimo o preferencial. Cabe salientar que a maior parte das regiões com maior potencial para instalação de parques eólicos está em regiões litorâneas. Assim verifica-se que a AERIS e a LM Wind Power, fabricantes de pás recentemente instalados, estão bastante próximos de dois importantes portos do País: respectivamente o porto do Pecém, no Ceará, e o porto de Suape, em Pernambuco. A WOBLEN, que iniciou a produção de pás em Sorocaba, posteriormente instalou uma unidade dedicada à fabricação de pás, em Pecém. A TECSIS, grande exportadora de pás eólicas e com atuação neste mercado desde 1995, tem várias unidades na região de Sorocaba. Apesar das dificuldades logísticas associadas ao transporte das pás até o porto de Santos, a empresa preferiu fazer a expansão de suas unidades nas proximidades de sua localidade inicial.

O caso das torres não é muito diferente. As torres de concreto são preferencialmente manufaturadas em uma unidade montada dentro do parque eólico. Em função da elevada massa (peso) dos pré-moldados, o transporte rodoviário é praticamente inviável. As fábricas são geralmente unidades móveis, transportadas de parque em parque. Cabe ressaltar que todo este deslocamento só é viável a partir de um número mínimo de aerogeradores a serem instalados em um mesmo parque. No caso das torres de aço, o que se observa é, por um lado, o aproveitamento de unidades existentes, e de outro, a lógica de proximidade aos parques e/ou portos. A ENGEBA em Cubatão (SP), a ICEC em Mirassol (SP), a INTECNIAL em Erechim (RS) e a BRASILSAT em Curitiba (PR) estão aproveitando suas unidades fabris antes dedicadas à fabricação de outros produtos de caldeiraria. Instalações mais novas como a unidade da ENGEBA em Guaxupe (RS) e a fábrica da TORREBRAS em Camaçari (BA) parecem seguir a lógica da proximidade aos parques e portos. A ALSTOM instalou uma unidade de torres em Canoas (RS), dentro de uma área já existente da empresa, visando atender aos projetos da região Sul.

A fabricação dos fundidos e usinados de grande porte está concentrada em São Paulo, sendo que apenas uma empresa está em outro Estado – Minas Gerais. A BR Metals, empresa localizada em Matozinhos (MG), tem a vantagem de estar próxima aos fornecedores de ferro gusa, mas está distante dos fornecedores de usinagem. Essa empresa é justamente a mais verticalizada entre as fundições, de modo a evitar longos ciclos de produção e gastos com a logística para usinagem e pintura em São Paulo. Tanto a BR Metals como as empresas de São Paulo, como
a VOITH, ROMI e BARDELLA, já produziam fundidos e/ou usinados para outros segmentos e incluíram o eólico ao seu portfólio. No caso das fundições, a produção, principalmente, somente se viabiliza a partir de uma escala mínima. Assim, não é viável a instalação de unidades específicas, próximas das montadoras de aerogeradores.

5.4.2 ARRANJOS PRODUTIVOS LOCAIS E REGIÕES POTENCIAIS

São considerados Arranjos Produtivos Locais (APLs) as aglomerações de empresas localizadas em um mesmo território e que apresentam especialização produtiva e mantêm vínculos de articulação, interação, cooperação e aprendizagem entre si e com outros atores locais como governo, associações empresariais, instituições de crédito, ensino e pesquisa. As empresas podem ser desde produtoras de bens e serviços finais até fornecedoras de insumos e equipamentos, prestadoras de consultoria e serviços, comercializadoras, clientes, entre outros (site MDIC - http://www.mdic.gov.br/sitio/interna/interna.php?area=2&menu=300 acesso em 16/05/14).

Para ser considerado APL, além da existência de um número significativo de atores que atuam em torno de uma atividade produtiva predominante, em determinado território, é necessário que estes compartilhem formas percebidas de cooperação e algum mecanismo de governança. Atualmente não se verifica a presença de APLs formais da indústria eólica, ou mesmo informais, pois não se observam estas características de cooperação e governança (nas várias entrevistas realizadas para este relatório não houve afirmações neste sentido). O que existe efetivamente são diferentes tipos de aglomerações. Há aglomerações de fornecedores de torres e/ou pás em torno das montadoras e há aglomerações de subfornecedores para determinados itens em torno de cadeias existentes. O primeiro tipo de aglomeração tende a ocorrer nos estados com elevado potencial eólico e o segundo parece estar mais relacionado ao tipo de cadeia, como a metalmecânica, por exemplo, fortemente desenvolvida em São Paulo.

Para facilitar a identificação destas aglomerações, a Figura 34 apresenta uma visão geral da cadeia produtiva de bens da indústria eólica, incluindo desde montadoras até os fabricantes de componentes, subcomponentes e insumos.
O Estado de Pernambuco e o de São Paulo são os únicos que reúnem os três elos fundamentais da cadeia produtiva do aerogerador. No caso de Pernambuco, na região de Ipojuca, próximo do Complexo Industrial Portuário de Suape, há uma montadora (IMPSA), um fabricante de torres (GESTAMP) e um fabricante de pás (LM – dentro do complexo), além de alguns fornecedores de itens para torres. No Estado de São Paulo há duas montadoras (WOBBEN e GE), um fabricante de pás (TECSI) e três fabricantes de torres (ENGEBAS, ICEC e EOLICABRÁS). Além dessas empresas, o Estado concentra o maior número de fornecedores de subcomponentes e insumos para o setor.

Na Bahia estão instaladas três montadoras: GAMESA e ALSTOM, em Camaçari, e a ACCIONA, em Simões Filho (região metropolitana de Salvador). Em Camaçari há também um fabricante de torres, a TORREBRAS. Embora não tenha ainda um fabricante de pás, a TECSI anunciou em 2013 a intenção de instalar uma unidade produtiva no mercado doméstico, também na região de Camaçari. O Ceará tem duas fábricas de pás (AERIS e WOBEN), mas nenhuma montadora ou fábrica de torres de aço (apenas a CTZ de torres de concreto). A Vestas, no período do FINAME 1, tinha uma instalação em Maracanaú. A empresa, que está iniciando processo para credenciamento no FINAME 2 e necessita de uma área maior, ainda não informou o local da nova fábrica. O Estado do Rio Grande do Sul tem quatro fábricas de torre (três de aço e uma de concreto), mas nenhum fabricante de pás. A IMPSA prevê a instalação de uma unidade de naceles e cubos na cidade de Guaíba, mas ainda não iniciou
sua construção. A localização de fábricas no RS é vista como muito interessante, pois, além do elevado potencial eólico, o Estado oportunizaria a exportação de aerogeradores para diversos países da América Latina.

Santa Catarina tem como única representante deste nível de fabricantes a WEG, instalada em Jaraguá do Sul. Cabe salientar que a WEG tem como característica uma estratégia de verticalização das cadeias produtivas associadas aos seus produtos, suportada por seu grande parque fabril. No caso do segmento eólico, é possível que boa parte dos subcomponentes venha a ser produzida internamente.

O Estado do Rio Grande do Norte, por conta do grande número de parques instalados e a instalar, teria potencial para o desenvolvimento de aglomerações produtivas. Porém, com exceção da fábrica móvel de torres de concreto da WOBBEN, não tem fabricantes instalados. O principal fator para esta realidade é a precariedade em termos de sua infraestrutura portuária. O Paraná tem somente uma fábrica de torres, a BRASILSAT.

Considerando-se a dispersão geográfica das montadoras e fabricantes de grandes componentes, assim como as longas distâncias das fábricas do Nordeste (principalmente) aos fornecedores de subcomponentes e insumos concentrados no Sudeste e as consequentes dificuldades logísticas, acredita-se haver oportunidade para a instalação de novos fornecedores nos aglomerados do Nordeste e também no Rio Grande do Sul.

5.4.3 LOCALIZAÇÃO DE FORNECEDORES X FATORES LOGÍSTICOS

Apesar do interesse das montadoras em estarem próximas a portos, a maior parte do transporte dos componentes é realizada pelo modal rodoviário. A proximidade aos portos facilita o recebimento dos itens importados, como caixa multiplicadora, gerador, flanges, insumos para pás, entre outros, e o transporte de grandes componentes como as pás, a nacele e seções das torres de aço, por exemplo, do Nordeste para o Sul, além, é claro, de sua exportação. Cabe salientar que os produtos importados podem utilizar transporte naval internacional, enquanto os fabricados nacionalmente podem usar somente navios de bandeira brasileira, de custos geralmente mais elevados e de menor disponibilidade.

Para a logística dentro do território nacional faltam navios especializados que possam proporcionar um serviço de transporte marítimo de cabotagem confiável, regular e competitivo para as “cargas de projeto” (produtos que, por suas grandes dimensões, não podem ser transportados em containers e/ou que exigem equipamentos especiais para todas as etapas da logística). Atualmente há apenas uma empresa habilitada a operar com navio com esta característica específica para a eólica. Comparativamente ao transporte rodoviário, reconhecidamente de infraestrutura deficiente e limitada, a cabotagem permite reduzir significativamente o tempo de viagem. O transporte de uma pá, por exemplo, de São Paulo (porto de Santos) para Fortaleza...
Ministério do Desenvolvimento, Indústria e Comércio Exterior
Mapeamento da Cadeia produtiva da indústria eólica no Brasil

(porto de Pecém), por via rodoviária pode levar até 50 dias, enquanto que por via marítima demandaria no máximo seis dias (notícia Valor Econômico, de 28/03/14). As montadoras apontam ainda dificuldades com a infraestrutura dos portos brasileiros e seu elevado custo de operação (em algumas localidades).

No caso do modal rodoviário, a legislação atual exige licenças e uso de caminhões especiais para transporte de produtos com peso ou dimensional acima de determinados limites. A carenagem da nacele, as pás e as torres ultrapassam os limites dimensionais, e os fundidos e a nacele montada ultrapassam o limite de peso. Segundo as montadoras, faltam caminhões especiais no mercado e também rotas (malha rodoviária) adequadas à entrega dos produtos. Essas dificuldades, somadas às condições (em geral) ruins das estradas brasileiras e às longas distâncias a percorrer, resultam em custos de frete elevados, onerando o preço dos aerogeradores.

Essas dificuldades logísticas incentivam a localização dos fornecedores de grandes componentes nas proximidades dos parques. Mesmo depois do parque instalado, a proximidade ao fabricante é interessante para a atividade de O&M, que seria favorecida em termos de custo e agilidade. Da mesma forma, seria bastante interessante o desenvolvimento de subfornecedores próximos a essas empresas-âncoras.

No caso particular das empresas com restrição à mudança de local, caso dos fabricantes de fundidos e usinados, é interessante que disponham de todos os processos necessários (fundição, usinagem, metalização e pintura), ou então que tenham subcontratados próximos de suas instalações, de modo a minimizar os custos e dificuldades logísticas. Inclusive pode ser interessante que agreguem alguma montagem ao seu processo, principalmente de itens que também estão limitados à produção no Sudeste, de forma que substitua vários fretes até as regiões dos parques por apenas um.
6. CONCLUSÕES E SUGESTÕES

Um esquema da cadeia produtiva de bens e serviços da indústria eólica foi apresentado no Relatório dos itens que compõem a cadeia produtiva de bens e serviços (Figura 22), compreendendo as seguintes atividades: fornecimento de materiais e componentes, montagem do aerogerador, serviços de logística e operações, geração e distribuição de energia e pesquisa e desenvolvimento. Utilizando-se esta organização da cadeia, os gargalos produtivos e demais dificultantes para o fornecimento local de bens e serviços verificados ao longo das análises realizadas são apresentados de forma resumida e sistemática no Quadro 40. Nesse quadro são apresentados adicionalmente os principais incentivos à nacionalização identificados, assim como as necessidades e oportunidades relacionadas a este processo. Desta maneira completam-se as diversas análises realizadas anteriormente com uma visão geral das questões de maior criticidade relacionadas ao setor eólico no Brasil.

Com relação aos aspectos de localização espacial da cadeia produtiva, polos e arranjos produtivos, conclui-se principalmente que:

- há no País dois grandes polos produtivos para grandes componentes eólicos, um na região Nordeste e outro no Sul–Sudeste;
- importantes fatores influentes na decisão de localização das unidades de montagem e fabricação de grandes componentes são: a) proximidade aos parques eólicos e condições de infraestrutura de portos e rodovias; b) proximidade da cadeia produtiva; c) aproveitamento de instalação fabril existente;
- não se verifica a presença de APLs formais ou informais da indústria eólica, mas sim diferentes tipos de aglomerações de empresas da cadeia produtiva;
- o tamanho e peso dos componentes eólicos, a dispersão geográfica das montadoras e fabricantes de grandes componentes entre Nordeste e Sul–Sudeste e a concentração dos fornecedores de subcomponentes e insumos no sudeste resulta em uma série de dificuldades logísticas.
<table>
<thead>
<tr>
<th>Componentes</th>
<th>Materials</th>
<th>Logística e operações</th>
<th>P&D – Tecnologia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mão de obra</td>
<td>Manufatura do aerogerador</td>
<td>Incentivos, necessidades e oportunidades para o fornecimento local de bens e serviços</td>
<td></td>
</tr>
<tr>
<td>Aço laminado (chapas), aço forjado (anéis), aço para fundidos, aço forjado, aço silício (núcleo magnético)</td>
<td>Gargalos produtivos (capacidade limitada ou ausência de fornecedor)</td>
<td>Certificação de dados de vento (uso de modelos mais avançados)</td>
<td>Projecto de aerogeradores e componentes</td>
</tr>
<tr>
<td>Cimentos, aditivos e grautes especiais (para torres de concreto)</td>
<td>Faltando competitividade dos itens locais (custo Brasil, custo de mão de obra, acúmulo de créditos de PIS/Cofins e ICMS, baixa escala de produção)</td>
<td>Contratação de data de vento (uso de modelos mais avançados)</td>
<td>Projeto de aerogeradores e componentes</td>
</tr>
<tr>
<td>Fibra de vidro (fio e/ou tecido), fibra de carbono (fio e/ou tecido)</td>
<td>Mão de obra</td>
<td>Gargalos produtivos (capacidade limitada ou ausência de fornecedor)</td>
<td>Licenciamento ambiental</td>
</tr>
<tr>
<td>Resina epóxi</td>
<td>Mão de obra</td>
<td>Certificação de dados de vento (uso de modelos mais avançados)</td>
<td>Contratação por leilões – incentivo à melhoria de desempenho (competição)</td>
</tr>
<tr>
<td>Materiais para núcleo das pás e para acabamento</td>
<td>Mão de obra</td>
<td>Certificação de dados de vento (uso de modelos mais avançados)</td>
<td>Projeto de aerogeradores e componentes</td>
</tr>
<tr>
<td>Flanges e internos para torres</td>
<td>Mão de obra</td>
<td>Certificação de dados de vento (uso de modelos mais avançados)</td>
<td>Projeto de aerogeradores e componentes</td>
</tr>
<tr>
<td>Rolamentos do passo do rotor</td>
<td>Mão de obra</td>
<td>Certificação de dados de vento (uso de modelos mais avançados)</td>
<td>Projeto de aerogeradores e componentes</td>
</tr>
<tr>
<td>Carcaça do cubo</td>
<td>Mão de obra</td>
<td>Certificação de dados de vento (uso de modelos mais avançados)</td>
<td>Projeto de aerogeradores e componentes</td>
</tr>
<tr>
<td>Cabeças multiplocaadoras</td>
<td>Mão de obra</td>
<td>Certificação de dados de vento (uso de modelos mais avançados)</td>
<td>Projeto de aerogeradores e componentes</td>
</tr>
<tr>
<td>Imãs permanentes</td>
<td>Mão de obra</td>
<td>Certificação de dados de vento (uso de modelos mais avançados)</td>
<td>Projeto de aerogeradores e componentes</td>
</tr>
<tr>
<td>Rolamentos do passo do rotor, de giro e principal</td>
<td>Mão de obra</td>
<td>Certificação de dados de vento (uso de modelos mais avançados)</td>
<td>Projeto de aerogeradores e componentes</td>
</tr>
<tr>
<td>Anéis de aço</td>
<td>Mão de obra</td>
<td>Certificação de dados de vento (uso de modelos mais avançados)</td>
<td>Projeto de aerogeradores e componentes</td>
</tr>
<tr>
<td>Engates</td>
<td>Mão de obra</td>
<td>Certificação de dados de vento (uso de modelos mais avançados)</td>
<td>Projeto de aerogeradores e componentes</td>
</tr>
<tr>
<td>Flanges e internos para torres</td>
<td>Mão de obra</td>
<td>Certificação de dados de vento (uso de modelos mais avançados)</td>
<td>Projeto de aerogeradores e componentes</td>
</tr>
<tr>
<td>Rolamentos do passo do rotor</td>
<td>Mão de obra</td>
<td>Certificação de dados de vento (uso de modelos mais avançados)</td>
<td>Projeto de aerogeradores e componentes</td>
</tr>
<tr>
<td>Carcaça do cubo</td>
<td>Mão de obra</td>
<td>Certificação de dados de vento (uso de modelos mais avançados)</td>
<td>Projeto de aerogeradores e componentes</td>
</tr>
<tr>
<td>Cabeças multiplocaadoras</td>
<td>Mão de obra</td>
<td>Certificação de dados de vento (uso de modelos mais avançados)</td>
<td>Projeto de aerogeradores e componentes</td>
</tr>
<tr>
<td>Imãs permanentes</td>
<td>Mão de obra</td>
<td>Certificação de dados de vento (uso de modelos mais avançados)</td>
<td>Projeto de aerogeradores e componentes</td>
</tr>
<tr>
<td>Flanges e internos para torres</td>
<td>Mão de obra</td>
<td>Certificação de dados de vento (uso de modelos mais avançados)</td>
<td>Projeto de aerogeradores e componentes</td>
</tr>
<tr>
<td>Rolamentos do passo do rotor</td>
<td>Mão de obra</td>
<td>Certificação de dados de vento (uso de modelos mais avançados)</td>
<td>Projeto de aerogeradores e componentes</td>
</tr>
<tr>
<td>Carcaça do cubo</td>
<td>Mão de obra</td>
<td>Certificação de dados de vento (uso de modelos mais avançados)</td>
<td>Projeto de aerogeradores e componentes</td>
</tr>
<tr>
<td>Cabeças multiplocaadoras</td>
<td>Mão de obra</td>
<td>Certificação de dados de vento (uso de modelos mais avançados)</td>
<td>Projeto de aerogeradores e componentes</td>
</tr>
<tr>
<td>Imãs permanentes</td>
<td>Mão de obra</td>
<td>Certificação de dados de vento (uso de modelos mais avançados)</td>
<td>Projeto de aerogeradores e componentes</td>
</tr>
</tbody>
</table>

Quadro 40 – Principais gargalos, incentivos, necessidades e oportunidades para o fornecimento local de bens e serviços
A seguir, são apresentadas diversas sugestões para fomentar o desenvolvimento da cadeia produtiva e de clusters e arranjos produtivos.

a) Desenvolvimento de uma política industrial mais ampla, contemplando aspectos de competitividade, produtividade e com ênfase no desenvolvimento tecnológico

Várias das dificuldades verificadas parecem ter como origem comum a ausência de uma política industrial voltada ao setor. O instrumento que atualmente está movimentando a localização da fabricação de itens produtivos são basicamente as regras do FINAME para aerogeradores estabelecidas pelo BNDES para concessão de financiamento. O desenvolvimento de uma indústria nova e portadora de futuro, como é a eólica, poderia ser melhor estruturado a partir de uma política de desenvolvimento industrial mais ampla. Somente regras de conteúdo local para financiamento de aerogeradores não parecem ser suficientes para um desenvolvimento sustentável e verdadeiro. Entende-se que o desenvolvimento de uma indústria e de sua cadeia produtiva deveria contemplar outras questões, como a produtividade e competitividade da indústria (inclusive nos mercados externos), com ênfase no desenvolvimento tecnológico e na inovação e com uma visão de planejamento de longo prazo. A metodologia do BNDES tem o grande mérito de ter iniciado um processo de localização, mas, conforme já comentado, outras iniciativas governamentais são necessárias para o desenvolvimento do setor. Em termos de avanços tecnológicos, é importante a criação no País de um ambiente de inovação para a indústria eólica para o desenvolvimento de projetos nacionais de aerogeradores e componentes, com o estabelecimento de redes de pesquisa e inovação (a exemplo do que foi feito em países europeus como a Dinamarca e a Alemanha) e através da estruturação de centros de tecnologia. A elaboração de um *roadmap* de tecnologia é uma alternativa interessante para orientar as pesquisas na área, bem como para definição de escopo de projetos que poderiam receber financiamento público.

b) Melhor conectar a política industrial com a política energética do País, de forma a dar melhores condições (segurança) para as empresas fazerem seus investimentos

O objetivo fundamental da política energética de um país é garantir o suprimento de energia necessário ao desenvolvimento econômico e ao bem-estar da sociedade, e para garantir o suprimento de energia é necessária (entre outras coisas) a construção da infraestrutura energética e de sua cadeia produtiva. Daí a forte correlação entre as duas políticas. Tanto a política industrial como a política energética são políticas públicas, concebidas e implementadas no âmbito do estado, uma depende da outra e tanto melhor serão os resultados quanto melhor for o alinhamento entre elas (PINTO JR, 2007). Além de sinalizar a demanda de energia através da divulgação de planejamentos de longo prazo, como o Plano Decenal de Expansão de Energia
2022, a contratação de energia, no caso da fonte eólica, poderia levar em conta aspectos relevantes ao desenvolvimento de uma cadeia produtiva nacional voltada à implantação dos parques eólicos.

Um exemplo objetivo deste alinhamento seria a manutenção de um volume mínimo anual de contratações de eólica, com realização de pelo menos dois leilões por ano em períodos diferentes. Outra possibilidade seria o estabelecimento de uma legislação específica para o Mercado Livre, de modo a facilitar seu desenvolvimento, ainda tímido (376 MW contratados até 2013), e que poderia se tornar um volume de energia adicional relevante para a cadeia produtiva. Sugere-se, ainda, a flexibilização dos prazos de início de operação dos parques, de modo a prevenir o acúmulo de pedidos na cadeia produtiva. Do lado da cadeia produtiva, mecanismos como prêmios por desempenho pela entrega antecipada dos itens são também uma alternativa.

c) Aperfeiçoamento do REIDI (Regime Especial de Incentivos para o Desenvolvimento da Infraestrutura), estendendo seus benefícios para toda a cadeia produtiva

Esta é uma reivindicação declarada dos fabricantes de aerogeradores e seus componentes, expressa principalmente através de suas associações, como a ABIMAQ. Na atual configuração do REIDI, os fabricantes do setor, que têm suas vendas concentradas geralmente apenas nos mercados de infraestrutura, acabam gerando enorme acúmulo de créditos de PIS/ Cofins. As empresas acabam embutindo este custo financeiro em seu preço, onerando o setor e levando a uma perda de competitividade dos produtos nacionais perante os importados.

Neste sentido, sugere-se uma alteração do Decreto nº 6.144, de 2007, tornando elegível à co-habilitação a pessoa jurídica contratada por pessoa jurídica habilitada ao regime para prestar serviços destinados exclusivamente à execução do projeto aprovado, inclusive com o fornecimento de bens.

d) Incentivo à adoção de estratégias de Supply Chain colaborativas, com estabelecimento de parcerias e contratos de longo prazo

Conforme comentado no Capítulo 3, fatores como a especificidade e a importância da confiabilidade dos componentes geralmente incentivam as montadoras a estabelecerem contratos de longo prazo ou a estruturarem acordos de forma a garantir um fornecimento contínuo e de alta qualidade. No caso de uma indústria cuja cadeia produtiva está em fase de estruturação, estes acordos parecem ser ainda mais importantes. Porém, na prática, ainda não estão ocorrendo de forma mais ampla no Brasil, principalmente no nível dos subcomponentes.
À medida que o fornecimento vai ficando mais restrito, por conta da crescente exigência de conteúdo local, este alinhamento é ainda mais recomendável.

O estabelecimento de parcerias e planejamento de longo prazo contribuiria significativamente para a minimização de possíveis gaps de fornecimento e para o atendimento aos requisitos do BNDES dentro dos prazos programados, além de outros benefícios. Com contratos, por exemplo, de três anos de fornecimento são possíveis redução de custo, aumento de competitividade e garantia de fornecimento. Também é importante que a demanda gerada a partir dos leilões seja rapidamente repassada à cadeia. Atualmente há defasagens entre o leilão e a solicitação de compra de componentes de oito meses ou mais.

e) Adequação da cadeia metalmecânica de forma a atender os elevados níveis de qualidade e produtividade demandados pelo setor eólico

Conforme já comentado, muitos dos componentes e subcomponentes demandados pela indústria eólica são bastante específicos e de grandes dimensões. Diversas empresas do segmento metalmecânico que hoje atendem à eólica, antes produziam itens de grande porte para projetos spot, com dificuldade para ocupar suas capacidades produtivas. O desenvolvimento da indústria eólica no Brasil trouxe a produção seriada para fabricantes que trabalhavam até então apenas com pedidos spot. Essas empresas podem ter agora uma produção contínua, gerando novos empregos e com melhores resultados financeiros. Há, no entanto, a necessidade de uma adaptação das empresas a este novo modelo produtivo, de forma que a operação aconteça com adequados níveis de qualidade e produtividade. Neste sentido, recomenda-se um suporte técnico no âmbito da gestão da produção às empresas entrantes neste segmento, bem como incentivos para renovação do parque fabril (muitas das máquinas existentes precisam de adequações ou não são capazes de processar os componentes dos aerogeradores de maior tamanho/potência).

f) Ações voltadas ao processo de desenvolvimento de fornecedores da cadeia produtiva nacional do setor eólico

Uma vez identificada a existência de diversos gargalos produtivos e a necessidade de desenvolvimento de novos fornecedores nacionais neste setor, recomenda-se a realização de um estudo complementar, agora voltado ao mapeamento das competências técnicas e de gestão das empresas já atuantes e de empresas potenciais. A identificação das competências necessárias e a avaliação do nível de prontidão deste conjunto de empresas frente a elas constituiria uma base importante de informações para ações de desenvolvimento de fornecedores.

Sugere-se também algum tipo de suporte ou mecanismo para que novos fornecedores tenham facilitado o seu acesso às montadoras e a suas sistemáticas de desenvolvimento de fornecedores.
g) Desenvolvimento de ações no âmbito federal e dos estados e municípios para melhoria do fluxo logístico dos grandes componentes

Importantes gargalos a solucionar são os relativos à infraestrutura de portos e rodovias (malha rodoviária especialmente da região Nordeste) e à falta de navios e caminhões especiais para o transporte dos grandes componentes. Neste sentido, parece bastante oportuna a realização de um estudo para levantamento das rotas rodoviárias existentes que considere a localização espacial tanto dos parques contratados e potenciais como dos fabricantes de componentes e seus fornecedores. Este estudo poderia servir de base para o desenvolvimento de ações governamentais no âmbito federal e dos estados e municípios que visem melhorar o fluxo logístico.

h) Incentivos ao desenvolvimento de arranjos produtivos locais, especialmente nas regiões Sul e Sudeste

Há oportunidades para organização dos aglomerados produtivos atuais em forma de APLs, de modo que as empresas constituintes possam cooperar e trocar experiências e conhecimentos e interagir com outros atores locais como governo, associações e instituições de pesquisa. Embora haja maior concentração da cadeia de bens para cubo e nacele no Sul–Sudeste, outras regiões também podem ser incentivadas.

Regiões com potencial para o desenvolvimento de APLs seriam, no Sul, a região metropolitana de Porto Alegre (incluindo Guaíba) e a região de Pelotas/Rio Grande do Sul, e, no Nordeste, a região do polo de Camaçari na Bahia, a região do complexo industrial de Suape, em Pernambuco, e a região do porto de Pecém, no Ceará.

Na região metropolitana de Porto Alegre já há fabricantes de torres instalados ou em processo final de instalação e há previsão de instalação de uma montadora. O porto marítimo de Rio Grande já recebe diversos componentes para os parques eólicos do Rio Grande do Sul e é uma localidade muito interessante para a instalação de uma fábrica de pás (elo faltante nesta cadeia regional). Ainda, Rio Grande está recebendo as instalações do Centro de
Pesquisa e Desenvolvimento em Energia Eólica do Sul (CPDEO-Sul), que tem como objetivo o desenvolvimento de estudos e formação de mão de obra qualificada para atuar no setor, e congrega diversas universidades que realizam pesquisas no tema da eólica. Cabe lembrar que no Estado há um polo metalmecânico importante, o qual pode vir a atender demandas de subcomponentes para o aerogerador.

Da mesma forma, APLs podem ser organizados na Bahia, na região de Camaçari – Simões Filho, que concentra três montadoras e um fabricante de torres, com possibilidade de receber ainda um fabricante de pás, e nos estados de Pernambuco e Ceará. O Estado planeja fomentar um Núcleo de Energia Eólica no Cimatec (unidade do SENAI voltada para a educação, pesquisa, desenvolvimento e inovação industrial), próximo ao Polo de Camaçari, para testes e certificação, formação de técnicos especializados e de pesquisadores para o desenvolvimento de projetos na área de energia.

O Estado de Pernambuco, na região de Ipojuca, já reúne os três elos fundamentais da cadeia produtiva: uma montadora, um fabricante de torres e um fabricante de pás, além de alguns fornecedores de itens para torres. No Ceará, estão localizadas duas fábricas de pás, na região do Pecém, e uma fábrica de torres de concreto. Essas regiões podem buscar reforçar suas cadeias produtivas, atrair fabricantes de itens intermediários (subcomponentes) e também buscar apoio tecnológico de universidades e centros de pesquisa regionais.

Cabe ressaltar o papel dos governos estaduais e federal como instigadores e apoiadores deste processo. Projetos específicos podem ser desenvolvidos no sentido de identificar as complementaridades necessárias a cada região potencial, bem como as empresas nacionais ou estrangeiras com potencial de fornecimento e interesse, além de outros atores importantes para o desenvolvimento dos APLs.
REFERÊNCIAS

UPWIND. Concept report on generator topologies, mechanical & electromagnetic optimization. 2007.

ANEXOS
ANEXO 1 – LISTA GERAL DE ITENS

| Torre | Estrutura torre de aço | Chapas de aço laminado
Flanges
Fixadores (parafusos ou elementos de conexão)
Portas
Escotilhas
Revestimentos (pintura) |
|---------------------------|------------------------|------------------------|
| | Estrutura torre de concreto | Concreto (pré-moldados)
Moldes
Insertos metálicos
Cabos de aço de protensão
Revestimentos (pintura)
Produtos de montagem dos pré-moldados (adesivos) |
| | Elementos internos | Escadas
Elevador
Plataformas
Suportes (brackets) e acessórios
Sistemas de proteção contra quedas
Guard-rails
Passa-cabos (pipe-rack ou eletrodutos)
Iluminação |
| Pás | Estrutura da pá (casco externo, mastro interno ou alma e raiz de inserção) | Resina epóxi ou poliéster
Tecido de fibra de vidro
Tecido de fibra de carbono
Espuma de PVC
Madeira Balsa
Massas e revestimentos de proteção
Sistema antirraios
Sistema antigeló |
| | Fixadores (parafusos T-bolt) e porcas
Sistemas acessórios | |
| | Carcaça do cubo (fundido e usinado)
Carenagem do cubo | Resina epóxi ou poliéster
Tecido de fibra de vidro
Anel
Base
Acionamento do passo/motorreductor
Painel de controle do passo
Bloco hidráulico para controle do passo
Cilindros do passo |
| | Rolamento do passo | |
| | Sistema do passo | |
| | Extensores
Sistema de lubrificação | |
<table>
<thead>
<tr>
<th>Elementos estruturais</th>
<th>Quadro principal (main frame)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Talha</td>
<td>Quadro traseiro (rear frame)</td>
</tr>
<tr>
<td>Carenagem da nacele</td>
<td>Bastidor</td>
</tr>
<tr>
<td>Acessórios</td>
<td>Parafusos estruturais</td>
</tr>
<tr>
<td>Eixo principal</td>
<td>Resina epóxi ou poliéster</td>
</tr>
<tr>
<td>Sistema de Yaw</td>
<td>Tecido de fibra de vidro</td>
</tr>
<tr>
<td>Conversor/Inversor</td>
<td>Luzes de sinalização</td>
</tr>
<tr>
<td>Transformador</td>
<td>Anemômetro (medidor de velocidade do vento)</td>
</tr>
<tr>
<td>Sistema de freios</td>
<td>Sensor de direção do vento</td>
</tr>
<tr>
<td>Sistema de travamento do rotor</td>
<td>Outros sensores</td>
</tr>
<tr>
<td>Painel de proteção elétrica</td>
<td>Para-raios</td>
</tr>
<tr>
<td>Cabos/barramento</td>
<td>Rolamentos do eixo principal</td>
</tr>
<tr>
<td>Unidade hidráulica</td>
<td>Sistema de lubrificação</td>
</tr>
<tr>
<td>Sistema de refrigeração da nacele</td>
<td>Rolamento Yaw</td>
</tr>
<tr>
<td>Slip Ring</td>
<td>Sistema de acionamento do YAW/motorredutor</td>
</tr>
<tr>
<td>Gerador</td>
<td>Painel de controle do YAW</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Elementos estruturais do estator</th>
<th>Gerador – Estator (sem caixa)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resina de impregnação</td>
<td>Gerador – Rotor (sem caixa)</td>
</tr>
<tr>
<td>Núcleo magnético</td>
<td></td>
</tr>
<tr>
<td>Bobinas</td>
<td></td>
</tr>
<tr>
<td>Elementos estruturais do rotor</td>
<td></td>
</tr>
<tr>
<td>Tampa do rotor</td>
<td></td>
</tr>
<tr>
<td>Imãs permanentes</td>
<td></td>
</tr>
</tbody>
</table>
ANEXO 2 – VISÃO ESQUEMÁTICA DO AEROGERADOR E SEUS COMPONENTES
Mapa da Cadeia Produtiva da Indústria Eólica no Brasil

Ministério do Desenvolvimento, Indústria e Comércio Exterior
Mapeamento da Cadeia produtiva da indústria eólica no Brasil
ANEXO 3 – LISTA GERAL DE SERVIÇOS

<table>
<thead>
<tr>
<th>DESENVOLVIMENTO DE PROJETOS DE PARQUES EÓLICOS</th>
<th>Identificação e seleção de áreas</th>
<th>Serviços topográficos e de sondagem</th>
<th>Suporte para análise fundiária</th>
<th>Contratos para arrendamento de terrenos e permissões</th>
<th>Estudos de conexão à rede de transmissão</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estudos de viabilidade</td>
<td>Revisão de restrições</td>
<td>Projeto conceitual do parque eólico</td>
<td>Mapeamento / medição do vento</td>
<td>Medicação de potência</td>
<td>Análise energética – estimativa de produção</td>
</tr>
<tr>
<td>Desenvolvimento do projeto</td>
<td>Elaboração de estudos ambientais</td>
<td>Monitoramento do vento</td>
<td>Elaboração de projeto básico / leiaute</td>
<td>Avaliação das condições do site e rendimento energético</td>
<td>Suporte para conexão à rede</td>
</tr>
<tr>
<td>Negociação com fornecedores</td>
<td>Elaboração de termo de referência de fornecimento</td>
<td>Suporte para avaliação de propostas de fornecedores</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Negociação com compradores</td>
<td>Apoio ao leilão</td>
<td>Comercialização de contratos de energia – trading</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Relação com investidores</td>
<td>Elaboração de relatórios para investidores</td>
<td>Due Diligence</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pré-construção</td>
<td>Realização de leilões de contratação e aquisição</td>
<td>Elaboração/revisão do projeto elétrico e civil</td>
<td>Gestão da conexão com a rede</td>
<td>Avaliação do rendimento energético formal</td>
<td>Due diligence técnica</td>
</tr>
<tr>
<td>Construção e montagem</td>
<td>Gestão do projeto / execução</td>
<td>Coordenação e supervisão do trabalho</td>
<td>Transporte dos módulos do aerogerador</td>
<td>Engenharia e gestão do tráfego de grandes cargas</td>
<td>Movimentação de cargas</td>
</tr>
<tr>
<td>OPERAÇÃO E MANUTENÇÃO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>--</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>O&M</td>
<td>Operação do parque</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Serviços de controle integrado e monitoramento remoto</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Comunicação com o ONS (Operador Nacional do Sistema)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Análise e desempenho da produção</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Análise da disponibilidade</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medições e controle de grandezas elétricas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medições acústicas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Medições de curva de potência</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Inspeção preventiva</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manutenção preventiva e corretiva</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Diagnóstico de falhas</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Auditoria de qualidade e segurança</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Limpeza e tratamento de superfície das turbinas/ alpinismo</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grandes reparações de aerogeradores</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Retrofitting de aerogeradores</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Manutenção e reparação de pás</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Exploração</td>
<td>Comprovação de garantias</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ensaios de rendimento</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vigilância ambiental na exploração</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>OUTROS SERVIÇOS</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Treinamento</td>
</tr>
<tr>
<td></td>
<td>Certificações de turbinas, componentes e projetos</td>
</tr>
<tr>
<td></td>
<td>Estudos de inteligência de mercado, estudos sobre políticas e regulação</td>
</tr>
<tr>
<td></td>
<td>Seguros/gestão de sinistro/ gerenciamento de riscos</td>
</tr>
<tr>
<td></td>
<td>Financiamento de projetos</td>
</tr>
<tr>
<td></td>
<td>Projeto dos aerogeradores e seus componentes</td>
</tr>
</tbody>
</table>
ANEXO 4 – MONTADORAS DE AEROGERADOR E PRINCIPAIS MODELOS

<table>
<thead>
<tr>
<th>OEM Aerog, SEM caixa (país de origem)</th>
<th>Modelos Aerogerador -BR (potência nominal)</th>
<th>Conceito</th>
<th>Características do gerador</th>
<th>Controle de potência mecânica</th>
<th>Diâmetro rotor - DR / Altura eixo – AE</th>
</tr>
</thead>
<tbody>
<tr>
<td>IMPSA (Argentina) www.impsa.com</td>
<td>UNIPOWER IWP-70 (1.5MW)</td>
<td>Velocidade variada com conversor de frequência plena</td>
<td>Gerador síncrono de excitatriz com ímãs permanentes (PMSG)</td>
<td>Pitch</td>
<td>DR 70m AE 72 a 100m</td>
</tr>
<tr>
<td></td>
<td>UNIPOWER IWP-85 (2.0MW)</td>
<td>Velocidade variada com conversor de frequência plena</td>
<td>Gerador síncrono de excitatriz com ímãs permanentes (PMSG)</td>
<td>Pitch</td>
<td>DR 85m AE 60 a 72m</td>
</tr>
<tr>
<td></td>
<td>UNIPOWER IWP-100 (2.0MW)</td>
<td>Velocidade variada com conversor de frequência plena</td>
<td>Gerador síncrono de excitatriz com ímãs permanentes (PMSG)</td>
<td>Pitch</td>
<td>DR 103m AE 85 a 100m</td>
</tr>
<tr>
<td>WEG (Brasil) www.weg.net</td>
<td>AGW 110 (2.1MW)</td>
<td>Velocidade variada com conversor de frequência plena</td>
<td>Gerador síncrono de excitatriz com ímãs permanentes (PMSG)</td>
<td>Pitch</td>
<td>DR 110m AE 80 ou 120m</td>
</tr>
<tr>
<td></td>
<td>AGW 100 (2.2MW)</td>
<td>Velocidade variada com conversor de frequência plena</td>
<td>Gerador síncrono de excitatriz com ímãs permanentes (PMSG)</td>
<td>Pitch</td>
<td>DR 100m AE 80 ou 120m</td>
</tr>
<tr>
<td></td>
<td>AGW 93 (2.3MW)</td>
<td>Velocidade variada com conversor de frequência plena</td>
<td>Gerador síncrono de excitatriz com ímãs permanentes (PMSG)</td>
<td>Pitch</td>
<td>DR 93m AE 80 ou 120m</td>
</tr>
<tr>
<td>WOBLEN (Alemanha - subsidiária da Enercon) www.wobben.com.br</td>
<td>E-82 (2.0 a 3.0MW)</td>
<td>Velocidade variada com conversor de frequência plena</td>
<td>Gerador síncrono excitado eletricamente com enrolamento de campo (EESG)</td>
<td>Pitch</td>
<td>DR 82m AE 78 a 138m</td>
</tr>
<tr>
<td></td>
<td>E-92 (2.3MW)</td>
<td>Velocidade variada com conversor de frequência plena</td>
<td>Gerador síncrono excitado eletricamente com enrolamento de campo (EESG)</td>
<td>Pitch</td>
<td>DR 92 m AE 85 a 104m</td>
</tr>
</tbody>
</table>
Mapeamento da Cadeia produtiva da indústria eólica no Brasil

<table>
<thead>
<tr>
<th>OEM Aerog. COM caixa (país de origem)</th>
<th>Modelos Aerogerador -BR (potência nominal)</th>
<th>Conceito</th>
<th>Características do gerador</th>
<th>Controle de potência mecânica</th>
<th>Diâmetro rotor - DR / Altura eixo - AE</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE (EUA) www.gepower.com www.geenergy.com</td>
<td>GE 1,6-100 (1,6MW)</td>
<td>Velocidade variada com conversor de frequência de escala parcial</td>
<td>Gerador de indução duplamente excitado (DFIG)</td>
<td>Pitch (elétrico)</td>
<td>DR 100m AE 80 a 96m</td>
</tr>
<tr>
<td>GE (EUA) www.gepower.com www.geenergy.com</td>
<td>GE 1,7-100 (1,7MW)</td>
<td>Velocidade variada com conversor de frequência de escala parcial</td>
<td>Gerador de indução duplamente excitado (DFIG)</td>
<td>Pitch (elétrico)</td>
<td>DR 100m AE 80 a 96m</td>
</tr>
<tr>
<td>GE (EUA) www.gepower.com www.geenergy.com</td>
<td>GE 1,85-82,5 (1,85MW)</td>
<td>Velocidade variada com conversor de frequência de escala parcial</td>
<td>Gerador de indução duplamente excitado (DFIG)</td>
<td>Pitch (elétrico)</td>
<td>DR 82,5m AE 80m</td>
</tr>
<tr>
<td>ALSTOM (França) www.alstom.com</td>
<td>ECO 110 (3,0MW)</td>
<td>Velocidade variada com conversor de frequência de escala parcial IGBT (back-to-back)</td>
<td>Gerador de indução duplamente excitado (DFIG)</td>
<td>Pitch (elétrico)</td>
<td>DR 110m AE 75 a 100m</td>
</tr>
<tr>
<td>ALSTOM (França) www.alstom.com</td>
<td>ECO 122 (2,7MW)</td>
<td>Velocidade variada com conversor de frequência de escala parcial IGBT (back-to-back)</td>
<td>Gerador de indução duplamente excitado (DFIG)</td>
<td>Pitch (elétrico)</td>
<td>DR 122m AE 89m</td>
</tr>
<tr>
<td>GAMESA (Espanha) www.gamesacorp.com</td>
<td>G97 (2,0MW)</td>
<td>Velocidade variada com conversor de frequência de escala parcial IGBT e controle eletrônico PWM</td>
<td>Gerador de indução duplamente excitado (DFIG)</td>
<td>Pitch (hidráulico)</td>
<td>DR 97m AE 78 a 120m</td>
</tr>
<tr>
<td>GAMESA (Espanha) www.gamesacorp.com</td>
<td>G114 (2,5MW)</td>
<td>Velocidade variada com conversor de frequência de escala parcial IGBT e controle eletrônico PWM</td>
<td>Gerador de indução duplamente excitado (DFIG)</td>
<td>Pitch (hidráulico)</td>
<td>DR 114m AE 80 a 125m</td>
</tr>
<tr>
<td>ACCIONA (Espanha) www.accion-energy.com</td>
<td>AW116/3000 (3,0MW)</td>
<td>Velocidade variada com conversor de frequência de escala parcial IGBT e controle eletrônico PWM</td>
<td>Gerador de indução duplamente excitado (DFIG)</td>
<td>Pitch (hidráulico)</td>
<td>DR 116 AE 100 a 120m</td>
</tr>
<tr>
<td>VESTAS (Dinamarca) www.vestas.com</td>
<td>*V100 (1,8 a 2,0MW)</td>
<td>Velocidade variada com conversor de frequência de escala parcial</td>
<td>Gerador de indução duplamente excitado (DFIG)</td>
<td>Pitch (hidráulico)</td>
<td>DR 100m AE 80 e 95m</td>
</tr>
<tr>
<td>VESTAS (Dinamarca) www.vestas.com</td>
<td>*V90 (3,0MW)</td>
<td>Velocidade variada com conversor de frequência de escala parcial</td>
<td>Gerador de indução duplamente excitado (DFIG)</td>
<td>Pitch (hidráulico)</td>
<td>DR 90m AE 65 a 105m</td>
</tr>
<tr>
<td>SIEMENS (Alemanha) www.siemens.com.br/energy</td>
<td>*SWT-2,3-101 (2,3MW)</td>
<td>Velocidade variada com conversor de frequência plena</td>
<td>Gerador de indução com rotor de gaiola (SCIG) sem slip rings</td>
<td>Pitch</td>
<td>DR 101m AE 80 a 100m</td>
</tr>
<tr>
<td>SUZLON (Índia) www.suzlon.com</td>
<td>**S95 e S97 (2,1MW)</td>
<td>Velocidade variada com conversor de frequência de escala parcial (Woodward’s CONCYCLE®)</td>
<td>Gerador de indução duplamente excitado (DFIG) com slip rings</td>
<td>Pitch</td>
<td>DR 95 e 97m AE 80 a 100m</td>
</tr>
</tbody>
</table>

* Máquinas credenciadas apenas na metodologia antiga. // ** Máquinas vendidas no mercado brasileiro, mas não credenciadas no BNDES para nenhuma das metodologias. // IGBT= insulated-gate bipolar transistors; PWM = Pulse-width modulation.
ANEXO 5 – METODOLOGIA DO BNDES PARA CREDENCIAMENTO DE AEROGERADORES

Ministério do Desenvolvimento, Indústria e Comércio Exterior

Mapeamento da Cadeia produtiva da indústria eólica no Brasil
Ministério do Desenvolvimento, Indústria e Comércio Exterior

Mapeamento da cadeia produtiva da indústria eólica no Brasil